Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage

Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile one- step electrochemical deposition (ED) method. With an applied external cathodic voltage (-1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 8; no. 12; pp. 3749 - 3763
Main Authors Nagaraju, Goli, Kakarla, Ramesh, Cha, Sung Min, Yu, Jae Su
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.12.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile one- step electrochemical deposition (ED) method. With an applied external cathodic voltage (-1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burMike amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1,190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.
Bibliography:Amorphous nickel tungsten tetraoxide (NiWO4) nanostructures (NSs) were successfully synthesized on a flexible conductive fabric (CF) using a facile one- step electrochemical deposition (ED) method. With an applied external cathodic voltage (-1.8 V for 15 min), the amorphous NiWO4 NSs with burl-like morphologies adhered well on the seed-coated CF substrate. The burMike amorphous NiWO4 NSs on CF (NiWO4 NSs/CF) are employed as a flexible and binder-free electrode for pseudocapacitors, which exhibit remarkable electrochemical properties with high specific capacitance (1,190.2 F/g at 2 A/g), excellent cyclic stability (92% at 10 A/g), and good rate capability (765.7 F/g at 20 A/g) in 1 M KOH electrolyte solution. The superior electrochemical properties can be ascribed to the hierarchical structure and large specific surface area of the burl-like amorphous NiWO4 NSs/CF. This cost-effective facile method for the synthesis of metal tungsten tetraoxide nanomaterials on a flexible CF could be promising for advanced electronic and energy storage device applications.
11-5974/O4
amorphous NiWO4 nanostructures,conductive fabrics,electrochemical deposition,electrochemical energystorage properties
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-015-0874-z