Design, strength prediction of Ti35NbxSnyZrzMo alloys with low elastic moduli and experimental verification on their mechanical properties

Based on the d-electron alloy design method and the average valence electron concentration theory,three kinds of metastable b-type Ti–35Nb-based alloys containing different quantities of Sn, Zr, and Mo alloying elements were designed, whose —Md = 2.45 e V and e/a = 4.24, and —Bo values = 2.869, 2.86...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 33; no. 6; pp. 657 - 662
Main Authors Wang, Yu, Dai, Shi-Juan, Chen, Feng, Yu, Xin-Quan, Zhang, You-Fa
Format Journal Article
LanguageEnglish
Published Springer Berlin Heidelberg Nonferrous Metals Society of China 01.12.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the d-electron alloy design method and the average valence electron concentration theory,three kinds of metastable b-type Ti–35Nb-based alloys containing different quantities of Sn, Zr, and Mo alloying elements were designed, whose —Md = 2.45 e V and e/a = 4.24, and —Bo values = 2.869, 2.866, and 2.860,respectively. Meanwhile, a formula for predicting the solid solution strength of Ti–Nb-based alloys was developed using JMat Pro software. The experiments show that the designed alloys are all composed of single b phase after solid solution treatment, the tensile strength of the alloys coincides well with that predicted by the formula(the relative error /4 %), and the elastic moduli decrease with —Bo values increasing. The Ti35Nb3.7Zr1.3Mo alloy has the biggest —Bo value(2.869) and the lowest elastic modulus(54 GPa) among the three designed alloys.
Bibliography:Ti–Nb alloys;Elastic modulus;d-Electron alloy design
Based on the d-electron alloy design method and the average valence electron concentration theory,three kinds of metastable b-type Ti–35Nb-based alloys containing different quantities of Sn, Zr, and Mo alloying elements were designed, whose —Md = 2.45 e V and e/a = 4.24, and —Bo values = 2.869, 2.866, and 2.860,respectively. Meanwhile, a formula for predicting the solid solution strength of Ti–Nb-based alloys was developed using JMat Pro software. The experiments show that the designed alloys are all composed of single b phase after solid solution treatment, the tensile strength of the alloys coincides well with that predicted by the formula(the relative error /4 %), and the elastic moduli decrease with —Bo values increasing. The Ti35Nb3.7Zr1.3Mo alloy has the biggest —Bo value(2.869) and the lowest elastic modulus(54 GPa) among the three designed alloys.
11-2112/TF
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-013-0145-7