Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach: Effects of two-blocks loading and R ratio

This contribution presents a continuum damage mechanics model for the high-cycle fatigue life prediction of rubber-like materials. The proposed model is an extension of that proposed by Wang et al. (2002) for multiaxial loadings. The damage strain energy release rate is first derived from a generali...

Full description

Saved in:
Bibliographic Details
Published inMechanics of materials Vol. 52; pp. 87 - 102
Main Authors Ayoub, G., Naït-Abdelaziz, M., Zaïri, F., Gloaguen, J.M., Charrier, P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This contribution presents a continuum damage mechanics model for the high-cycle fatigue life prediction of rubber-like materials. The proposed model is an extension of that proposed by Wang et al. (2002) for multiaxial loadings. The damage strain energy release rate is first derived from a generalized Ogden strain energy density and then from the cracking energy density. A new multiaxial fatigue predictor is proposed and presented in its most general form with the aim of being applicable to all hyperelastic materials. The effects of variable amplitude and mean stretch are explicitly accounted for in the damage evolution law. The fatigue damage behavior of a carbon-filled styrene–butadiene rubber is experimentally investigated under tension, torsion and combined tension–torsion loadings both in constant and variable amplitudes, including the effects of different R ratios (i.e. different minimum and maximum stretches). The proposed model, which requires few damage parameters to be identified, is used to predict the number of cycles to failure and, a satisfactory agreement between predicted values and experimental data is clearly highlighted for the different loading paths.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-6636
1872-7743
DOI:10.1016/j.mechmat.2012.03.012