Shuyu pills inhibit immune escape and enhance chemosensitization in hepatocellular carcinoma

BACKGROUNDHepatocellular carcinoma (HCC) is characterized by dysregulation of the immune microenvironment and the development of chemoresistance. Specifically, expression of the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis, an immune checkpoint, may lead to tu...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of gastrointestinal oncology Vol. 13; no. 11; pp. 1725 - 1740
Main Authors Deng, Zhe, Teng, Yong-Jie, Zhou, Qing, Ouyang, Zhao-Guang, Hu, Yu-Xing, Long, Hong-Ping, Hu, Mei-Jie, Mei, Si, Lin, Feng-Xia, Dai, Xin-Jun, Zhang, Bo-Yu, Feng, Ting, Tian, Xue-Fei
Format Journal Article
LanguageEnglish
Published Baishideng Publishing Group Inc 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUNDHepatocellular carcinoma (HCC) is characterized by dysregulation of the immune microenvironment and the development of chemoresistance. Specifically, expression of the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis, an immune checkpoint, may lead to tumour immune escape, resulting in disease progression. The latest research shows that tumour immune escape may be caused by the upregulation of PD-L1 mediated by hypoxia-inducible factor-1 alpha (HIF-1α), and simultaneous inhibition of HIF-1α and PD-L1 has the potential to enhance the host's antitumour immunity. Moreover, inhibition of the PD-1/PD-L1 axis may mitigate tumour chemoresistance. Shuyu pills (SYPs) contain immunity-enhancing and antitumour components, making them a potential HCC treatment. AIMTo investigate the efficacy of SYPs for HCC treatment via simultaneous HIF-1α and PD-L1 inhibition and the mechanism involved. METHODSA subcutaneous xenograft tumour model was first established in BALB/c nude mice by the subcutaneous injection of 1 × 107 SMMC-7721 cells. Male mice (male, 5 weeks old; n = 24) were then randomly divided into the following four groups (n = 6): Control (0.9% normal saline), SYP (200 mg/kg), SYP + cisplatin (DDP) (200 mg/kg + 5 mg/kg DDP weekly via intraperitoneal injection), and DDP (5 mg/kg cisplatin weekly via intraperitoneal injection). The dose of saline or SYPs for the indicated mouse groups was 0.2 mL/d via intragastric administration. The tumour volumes and body weights of the mice were measured every 2 d. The mice were euthanized by cervical dislocation after 14 d of continuous treatment, and the xenograft tissues were excised and weighed. Western blot assays were used to measure the protein expression of HIF-1α, PD-1, PD-L1, CD4+ T cells, and CD8+ T cells in HCC tumours from mice. Quantitative reverse transcription polymerase chain reaction was used for real-time quantitative detection of PD-1, PD-L1, and HIF-1α mRNA expression. An immunofluorescence assay was conducted to examine the expression of CD4+ T cells and CD8+ T cells. RESULTSCompared to mice in the control group, those in the SYP and SYP + DDP groups exhibited reduced tumour volumes and tumour weights. Moreover, the protein and mRNA expression levels of the oncogene HIF-1α and that of the negative immunomodulatory factors PD-1 and PD-L1 were decreased in both the SYP and SYP + DDP groups, with the decrease effects being more prominent in the SYP + DDP group than in the SYP group (HIF-1α protein: Control vs SYP, P = 0.0129; control vs SYP + DDP, P = 0.0004; control vs DDP, P = 0.0152, SYP + DDP vs DDP, P = 0.0448; HIF-1α mRNA: control vs SYP, P = 0.0009; control vs SYP + DDP, P < 0.0001; control vs DDP, P = 0.0003, SYP vs SYP + DDP, P = 0.0192. PD-1 protein: Control vs SYP, P = 0.0099; control vs SYP + DDP, P < 0.0001, SPY vs SYP + DDP, P = 0.0009; SYP + DDP vs DDP, P < 0.0001; PD-1 mRNA: control vs SYP, P = 0.0002; control vs SYP + DDP, P < 0.0001; control vs DDP, P = 0.0003, SPY vs SYP + DDP, P = 0.0003; SYP + DDP vs DDP, P = 0.0002. PD-L1 protein: control vs SYP, P < 0.0001; control vs SYP + DDP, P < 0.0001; control vs DDP, P < 0.0001, SPY vs SYP + DDP, P = 0.0040; SYP + DDP vs DDP, P = 0.0010; PD-L1 mRNA: Control vs SYP, P < 0.0001; control vs SYP + DDP, P < 0.0001; control vs DDP, P < 0.0001, SPY vs SYP + DDP, P < 0.0001; SYP + DDP vs DDP, P = 0.0014). Additionally, the quantitative and protein expression levels of CD4+ T cells and CD8+ T cells were simultaneously upregulated in the SYP + DDP group, whereas only the expression of CD4+ T cells was upregulated in the SYP group. (CD4+ T cell quantitative: Control vs SYP + DDP, P < 0.0001, SYP vs SYP + DDP, P = 0.0005; SYP + DDP vs DDP, P = 0.0002. CD4+ T cell protein: Control vs SYP, P = 0.0033; Control vs SYP + DDP, P < 0.0001; Control vs DDP, P = 0.0021, SYP vs SYP + DDP, P = 0.0004; SYP + DDP vs DDP, P = 0.0006. Quantitative CD8+ T cells: Control vs SYP + DDP, P = 0.0013; SYP vs SYP + DDP, P = 0.0347; SYP + DDP vs DDP, P = 0.0043. CD8+ T cell protein: Control vs SYP + DDP, P < 0.0001; SYP vs SYP + DDP, P < 0.0001; SYP + DDP vs DDP, P < 0.0001). Finally, expression of HIF-1α was positively correlated with that of PD-1/PD-L1 and negatively correlated with the expression of CD4+ T cells and CD8+ T cells. CONCLUSIONSYPs inhibit immune escape and enhance chemosensitization in HCC via simultaneous inhibition of HIF-1α and PD-L1, thus inhibiting the growth of subcutaneous xenograft HCC tumours.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supported by National Natural Science Foundation of China, No. U20A20408, and No. 82074450; Special Natural Science Fund for the Construction of an Innovative Province in Hunan Province, No. S2020JJMSXM1250; the Natural Science Foundation of Hunan Province, No. 2020JJ4066; Hunan Province "domestic first-class cultivation discipline" Integrated Traditional Chinese and Western medicine open fund project, No. 2018ZXYJH28 and No. 2020ZXYJH35.
Corresponding author: Xue-Fei Tian, PhD, Professor, College of Integrated Chinese and Western Medicine, Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, Hunan Province, China. 003640@hnucm.edu.cn
Author contributions: Deng Z, Teng YJ, Ouyang ZG, Hu YX, Hu MJ performed the experiments; Deng Z, Tian XF and Zhou Q designed and performed the study, conducted the statistical analysis and wrote the paper; Tian XF conceived and designed the study; Long HP performed high performance liquid mass spectrometry; Zhang BY processed the figures of the article; Mei S, Lin FX, Dai XJ, and Feng T reviewed and edited the manuscript; all authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy and integrity of any part of the work are appropriately investigated and resolved.
ISSN:1948-5204
1948-5204
DOI:10.4251/wjgo.v13.i11.1725