Development of optimum manufacturing technologies of radial plates for the ITER toroidal field coils

Japan Atomic Energy Agency is studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates used in the toroidal field coils for the International Thermonuclear Experimental Reactor (ITER) in collaboration with the Japanese industries. Three sector...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 82; no. 5; pp. 1473 - 1480
Main Authors Nakajima, H., Hamada, K., Okuno, K., Abe, K., Shimizu, T., Kakui, H., Yamaoka, H., Maruyama, N., Takayanagi, T.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2007
New York, NY Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Japan Atomic Energy Agency is studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates used in the toroidal field coils for the International Thermonuclear Experimental Reactor (ITER) in collaboration with the Japanese industries. Three sector form pieces were cut by plasma cutting machine from a hot rolled plate without any difficulties and one of them was machined to a 1.32-m long curved segment of the radial plate having the same size as the actual one. However, unacceptable large deformation about 5 mm flatness, which was not observed in 1-m long straight radial plate, was found after intermediate machining. Since it would be caused by groove direction against the hot rolled direction and/or curved shape of grooves, two trial manufactures of 0.4-m long straight radial plates have been performed to clarify the cause of the large deformation. Detailed investigation showed that the large deformation could be avoided if the groove direction would have been parallel to a rolling direction of the plate. Welding trials by using fiber laser technique was also performed and penetration of 15 mm could be obtained in a welding speed of 0.1 m/min at 5 kW laser power. An optimum manufacturing method has been proposed based on the development of manufacturing technologies.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2007.08.013