Laser cutting of thick sheet metals: Residual stress analysis

Laser cutting of tailored blanks from a thick mild steel sheet is considered. Temperature and stress field in the cutting sections are modeled using the finite element method. The residual stress developed in the cutting section is determined using the X-ray diffraction (XRD) technique and is compar...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 41; no. 3; pp. 224 - 232
Main Authors Arif, A.F.M., Yilbas, B.S., Aleem, B.J. Abdul
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Laser cutting of tailored blanks from a thick mild steel sheet is considered. Temperature and stress field in the cutting sections are modeled using the finite element method. The residual stress developed in the cutting section is determined using the X-ray diffraction (XRD) technique and is compared with the predictions. The structural and morphological changes in the cut section are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature and von Mises stress increase sharply in the cutting section, particularly in the direction normal to the cutting direction. The residual stress remains high in the region close to the cutting section.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0030-3992
1879-2545
DOI:10.1016/j.optlastec.2008.07.006