Crosstalk between nanotube devices: contact and channel effects

At reduced dimensionality, Coulomb interactions play a crucial role in determining device properties. While such interactions within the same carbon nanotube have been shown to have unexpected properties, device integration and multi-nanotube devices require the consideration of inter-nanotube inter...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 17; no. 9; pp. 2381 - 2385
Main Author Leonard, Francois
Format Journal Article
LanguageEnglish
Published IOP Publishing 14.05.2006
Online AccessGet full text

Cover

Loading…
More Information
Summary:At reduced dimensionality, Coulomb interactions play a crucial role in determining device properties. While such interactions within the same carbon nanotube have been shown to have unexpected properties, device integration and multi-nanotube devices require the consideration of inter-nanotube interactions. We present calculations of the characteristics of planar carbon nanotube transistors including interactions between semiconducting nanotubes and between semiconducting and metallic nanotubes. The results indicate that inter-tube interactions affect both the channel behaviour and the contacts. For long channel devices, a separation of the order of the gate oxide thickness is necessary to eliminate inter-nanotube effects. Because of an exponential dependence of this length scale on the dielectric constant, very high device densities are possible by using high-K dielectrics and embedded contacts.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/17/9/051