Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes
In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of...
Saved in:
Published in | Universe (Basel) Vol. 6; no. 8; p. 103 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
28.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter α is nearly in a special range −8<α/M2<−2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity. |
---|---|
AbstractList | In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter α α is nearly in a special range −8<α/M2<−2 −8<α/M2<−2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity. In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter α is nearly in a special range −8<α/M2<−2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity. |
Author | Wei, Shao-Wen Zhang, Yu-Peng Liu, Yu-Xiao |
Author_xml | – sequence: 1 givenname: Yu-Peng surname: Zhang fullname: Zhang, Yu-Peng – sequence: 2 givenname: Shao-Wen surname: Wei fullname: Wei, Shao-Wen – sequence: 3 givenname: Yu-Xiao orcidid: 0000-0002-4117-4176 surname: Liu fullname: Liu, Yu-Xiao |
BookMark | eNp1UctKxDAUDaLgc-224LrOTdOkzdIZnXFgQEFdh9s0lYw1GZOO4M5_8A_9EqOjIIKr--Ccwz3n7pNt550h5JjCKWMSRmtnn02IRkANFNgW2SsKWudUymr7V79LjmJcAgCteBrrPXJ9s7LOWXef3Zo4ZNcYBqt7k1mXTf065Of20bhovcM-u7AuDsa699e3Ga5jTHXsnTNDNu5RP2SXvjfxkOx02Edz9F0PyN304nZymS-uZvPJ2SLXrBJDzhGNFh1HKbFmBTZNm_atgLYrUYhKtlToqmsYLZumq4VsBJWV0ViWQKUp2AGZb3Rbj0u1CvYRw4vyaNXXwod79e1FVcC56bQE3kKpWSu1LiijgjYSAGuTtE42Wqvgn9YpB7VM3pPlqIqykBw4LaqE4huUDj7GYDql7YBDymYIaHtFQX3-Qv35ReKN_vB-rv2P8QG_EpIL |
CitedBy_id | crossref_primary_10_3390_universe9050205 crossref_primary_10_1140_epjc_s10052_025_13894_8 crossref_primary_10_1103_PhysRevD_110_024041 crossref_primary_10_1016_j_jheap_2024_12_004 crossref_primary_10_1140_epjc_s10052_020_08511_9 crossref_primary_10_1140_epjc_s10052_021_09400_5 crossref_primary_10_3390_universe8030182 crossref_primary_10_1016_j_dark_2024_101721 crossref_primary_10_1016_j_dark_2022_101082 crossref_primary_10_1103_PhysRevD_109_024026 crossref_primary_10_1088_1475_7516_2021_04_008 crossref_primary_10_3390_universe8090458 crossref_primary_10_1103_PhysRevD_106_024023 crossref_primary_10_1140_epjc_s10052_022_10229_9 crossref_primary_10_1103_PhysRevD_103_064002 crossref_primary_10_1088_1361_6382_acfa5c crossref_primary_10_1016_j_dark_2021_100789 crossref_primary_10_3390_universe8080415 crossref_primary_10_1103_PhysRevD_104_025006 crossref_primary_10_1103_PhysRevD_106_044024 crossref_primary_10_1142_S0217732322501541 crossref_primary_10_1140_epjc_s10052_020_08612_5 crossref_primary_10_1088_1361_6382_abc134 crossref_primary_10_1103_PhysRevD_104_044029 crossref_primary_10_1016_j_physletb_2022_137020 crossref_primary_10_1007_s40065_022_00369_x crossref_primary_10_1088_1361_6382_ac500a crossref_primary_10_1016_j_aop_2025_170002 crossref_primary_10_1103_PhysRevD_102_084005 crossref_primary_10_1140_epjc_s10052_022_10753_8 crossref_primary_10_1142_S0218271822500912 crossref_primary_10_1209_0295_5075_133_50006 crossref_primary_10_3390_universe8100549 crossref_primary_10_3390_universe8040232 crossref_primary_10_1016_j_scitotenv_2021_151851 crossref_primary_10_1140_epjc_s10052_022_11024_2 crossref_primary_10_1140_epjp_s13360_024_05524_1 crossref_primary_10_1140_epjp_s13360_023_04283_9 crossref_primary_10_1016_j_cjph_2023_04_016 crossref_primary_10_1088_1674_1056_ad225d crossref_primary_10_1103_PhysRevLett_132_171401 crossref_primary_10_1142_S0217732324500767 crossref_primary_10_1140_epjc_s10052_021_09692_7 crossref_primary_10_1088_1674_1137_abd01d crossref_primary_10_3390_universe8040244 crossref_primary_10_1140_epjc_s10052_021_09624_5 crossref_primary_10_3847_1538_4357_abc87f crossref_primary_10_1088_1475_7516_2021_08_045 crossref_primary_10_1142_S0218271825500075 crossref_primary_10_1140_epjc_s10052_021_08923_1 crossref_primary_10_3390_math10122113 crossref_primary_10_1140_epjc_s10052_021_09266_7 crossref_primary_10_1088_1475_7516_2020_09_030 crossref_primary_10_1142_S0218271822500663 crossref_primary_10_1088_1674_1137_abcd2d crossref_primary_10_1016_j_physleta_2021_127915 crossref_primary_10_3847_1538_4357_abd094 crossref_primary_10_1007_JHEP08_2020_105 crossref_primary_10_1016_j_physletb_2022_136997 crossref_primary_10_1016_j_dark_2024_101590 crossref_primary_10_3390_sym14030545 crossref_primary_10_1016_j_dark_2021_100918 crossref_primary_10_1140_epjc_s10052_020_08606_3 crossref_primary_10_1140_epjc_s10052_024_13409_x crossref_primary_10_1103_PhysRevD_105_104059 crossref_primary_10_1142_S0217751X22502062 |
Cites_doi | 10.1103/PhysRevD.98.084023 10.1142/S021827181750047X 10.1103/PhysRevD.38.2445 10.1103/PhysRevD.96.084057 10.1103/PhysRevLett.119.161101 10.1016/0370-2693(85)91616-8 10.1088/0264-9381/30/2/025008 10.1103/PhysRevD.102.024029 10.1103/PhysRevLett.124.081301 10.1098/rspa.1951.0201 10.1007/JHEP04(2010)082 10.1103/PhysRevD.94.104010 10.1088/0264-9381/31/8/085011 10.1103/PhysRevLett.118.221101 10.1016/j.dark.2020.100770 10.1088/1572-9494/aba242 10.1103/PhysRevD.81.044019 10.1103/PhysRevD.15.2724 10.1007/s10714-017-2214-y 10.1007/s10714-018-2474-1 10.1103/PhysRevD.91.124030 10.1103/PhysRevD.97.064024 10.1016/j.physletb.2020.135907 10.1103/PhysRevD.74.124006 10.1103/PhysRevD.102.024025 10.1103/PhysRevD.6.406 10.1016/0370-2693(95)01519-1 10.1088/1475-7516/2020/07/013 10.1103/PhysRevD.100.104052 10.1103/PhysRevD.96.124013 10.1103/PhysRevLett.55.2656 10.1140/epjc/s10052-019-7584-8 10.1103/PhysRevD.94.044008 10.1016/0370-2693(86)90681-7 10.1103/PhysRevD.97.084056 10.1098/rspa.1970.0021 10.1103/PhysRevD.65.084014 10.1088/0264-9381/33/10/105014 10.1103/PhysRevLett.116.061102 10.1140/epjc/s10052-020-08568-6 10.1103/PhysRevD.58.023005 10.1016/j.physletb.2020.135843 10.1103/PhysRevD.96.104023 10.1103/PhysRevD.82.103005 10.1103/PhysRevD.82.084013 10.1155/2017/7397159 10.1016/j.physletb.2018.01.003 10.1140/epjc/s10052-020-8164-7 10.1140/epjc/s10052-019-7334-y 10.1103/PhysRevLett.103.111102 10.1016/j.physletb.2020.135468 10.1140/epjc/s10052-019-7605-7 10.1103/PhysRevD.90.104019 10.1103/PhysRevLett.119.141101 10.1016/j.physletb.2020.135717 10.1103/PhysRevD.97.084023 10.1155/2016/1376016 10.1098/rspa.1951.0200 10.1016/j.physletb.2018.12.051 10.1103/PhysRevD.88.024006 10.1103/PhysRevD.99.104059 10.1140/epjp/s13360-021-01398-9 10.1103/PhysRevLett.14.57 10.1016/0550-3213(86)90429-3 10.1140/epjc/s10052-020-08639-8 10.1103/PhysRevD.101.084038 10.1103/PhysRevD.96.064038 10.1103/PhysRevLett.116.241103 10.1088/1361-6382/ab002f 10.1016/0550-3213(87)90465-2 10.1007/JHEP07(2020)027 10.1088/0264-9381/23/11/016 10.1103/PhysRevD.74.104033 10.1086/152990 10.1103/PhysRevD.94.124017 10.1088/1674-1137/abc1d4 10.1016/j.physletb.2014.04.044 10.1103/PhysRevD.96.064051 10.1103/PhysRevD.88.024042 10.1098/rspa.1970.0191 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/universe6080103 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2218-1997 |
ExternalDocumentID | oai_doaj_org_article_7055efc905d04c3d9cc213161b900a8e 10_3390_universe6080103 |
GroupedDBID | 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 LK5 M7R MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c376t-5aaec6f5a99a832abbd376d60df4a6679d16c7fb314bbf869b6197eca44019e23 |
IEDL.DBID | BENPR |
ISSN | 2218-1997 |
IngestDate | Wed Aug 27 01:26:01 EDT 2025 Mon Jun 30 11:14:13 EDT 2025 Tue Jul 01 04:33:34 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c376t-5aaec6f5a99a832abbd376d60df4a6679d16c7fb314bbf869b6197eca44019e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4117-4176 |
OpenAccessLink | https://www.proquest.com/docview/2429505127?pq-origsite=%requestingapplication% |
PQID | 2429505127 |
PQPubID | 2059542 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7055efc905d04c3d9cc213161b900a8e proquest_journals_2429505127 crossref_citationtrail_10_3390_universe6080103 crossref_primary_10_3390_universe6080103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-28 |
PublicationDateYYYYMMDD | 2020-07-28 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Universe (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Han (ref_73) 2017; 49 Mashhoon (ref_48) 2006; 74 (ref_70) 2006; 23 Cai (ref_17) 2002; 65 Page (ref_37) 1974; 191 Banados (ref_6) 2009; 103 Nucamendi (ref_81) 2020; 80 Abbott (ref_4) 2017; 119 Jefremov (ref_79) 2015; 91 Abbott (ref_1) 2016; 116 Liu (ref_75) 2018; 97 Gross (ref_10) 1986; 277 Cai (ref_40) 2010; 2010 Zalaquett (ref_49) 2014; 31 Hojman (ref_85) 2013; 30 Steinhoff (ref_62) 2010; 81 Dixon (ref_45) 1970; 319 (ref_56) 2017; 96 Conde (ref_83) 2019; 99 Warburton (ref_74) 2017; 96 Harms (ref_64) 2016; 94 Plyatsko (ref_71) 2017; 96 Uchupol (ref_50) 2016; 94 ref_25 ref_24 Suzuki (ref_39) 1998; 58 ref_23 ref_22 Armaza (ref_51) 2016; 33 Zhang (ref_66) 2019; 789 ref_20 Wald (ref_52) 1972; 6 Kobayashi (ref_35) 2020; 2020 Bonifacio (ref_26) 2020; 102 ref_29 Zhang (ref_88) 2019; 79 Seyrich (ref_53) 2014; 90 ref_27 Witzany (ref_78) 2019; 36 Abbott (ref_3) 2017; 118 Wei (ref_7) 2010; 82 Filipe (ref_54) 2018; 97 Zwiebach (ref_13) 1985; 156 Zhang (ref_68) 2018; 97 Mathisson (ref_42) 1937; 6 Penrose (ref_8) 1965; 14 Fernandes (ref_21) 2020; 805 ref_34 ref_33 Guo (ref_38) 2020; 80 Hawking (ref_9) 1970; 314 ref_32 Wiltshire (ref_15) 1986; 169 ref_31 ref_30 Mukherjee (ref_76) 2018; 778 Abbott (ref_2) 2016; 116 Glavan (ref_18) 2020; 124 Deriglazov (ref_58) 2016; 26 Kaplan (ref_86) 1949; 19 Zhang (ref_82) 2016; 94 Fernandes (ref_36) 2020; 102 Harms (ref_55) 2017; 96 Papapetrou (ref_43) 1951; 209 (ref_69) 1999; 49 Mukherjee (ref_65) 2018; 98 Pugliese (ref_67) 2013; 88 Abbott (ref_5) 2017; 119 Corinaldesi (ref_44) 1951; 209 Cai (ref_41) 2014; 733 ref_46 ref_89 Bento (ref_12) 1996; 368 ref_87 Han (ref_63) 2010; 82 Deriglazov (ref_60) 2017; 96 Cognola (ref_19) 2013; 88 Hojman (ref_47) 1977; 15 Faye (ref_77) 2006; 74 Wiltshire (ref_16) 1988; 38 Hennigar (ref_28) 2020; 2020 Liu (ref_84) 2020; 80 Toshmatov (ref_80) 2019; 100 Deriglazov (ref_59) 2016; 2016 Plyatsko (ref_72) 2018; 50 Tulczyjew (ref_57) 1959; 18 Gross (ref_11) 1987; 291 Deriglazov (ref_61) 2017; 2017 Boulware (ref_14) 1985; 55 |
References_xml | – volume: 98 start-page: 084023 year: 2018 ident: ref_65 article-title: Off-equatorial stable circular orbits for spinning particles publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.084023 – volume: 26 start-page: 1750047 year: 2016 ident: ref_58 article-title: Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations in ultra-relativistic regime and gravimagnetic moment publication-title: Int. J. Mod. Phys. D doi: 10.1142/S021827181750047X – ident: ref_32 – volume: 38 start-page: 2445 year: 1988 ident: ref_16 article-title: Black holes in string-generated gravity models publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.38.2445 – volume: 96 start-page: 084057 year: 2017 ident: ref_74 article-title: Evolution of small-mass-ratio binaries with a spinning secondary publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.084057 – volume: 119 start-page: 161101 year: 2017 ident: ref_5 article-title: [LIGO Scientific Collaboration and Virgo Collaboration]. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – volume: 156 start-page: 315 year: 1985 ident: ref_13 article-title: Curvature Squared Terms and String Theories publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)91616-8 – volume: 30 start-page: 025008 year: 2013 ident: ref_85 article-title: Can gravitation accelerate neutrinos? publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/30/2/025008 – volume: 102 start-page: 024029 year: 2020 ident: ref_26 article-title: Amplitudes and 4D Gauss-Bonnet Theory publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.024029 – volume: 124 start-page: 081301 year: 2020 ident: ref_18 article-title: Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.081301 – volume: 209 start-page: 259 year: 1951 ident: ref_44 article-title: Spinning test-particles in general relativity. II publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1951.0201 – volume: 2010 start-page: 082 year: 2010 ident: ref_40 article-title: Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2010)082 – volume: 94 start-page: 104010 year: 2016 ident: ref_64 article-title: Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.104010 – volume: 31 start-page: 085011 year: 2014 ident: ref_49 article-title: Spinning massive test particles in cosmological and general static spherically symmetric spacetimes publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/8/085011 – volume: 118 start-page: 221101 year: 2017 ident: ref_3 article-title: [LIGO Scientific Collaboration and Virgo Collaboration]. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.221101 – ident: ref_24 doi: 10.1016/j.dark.2020.100770 – ident: ref_25 doi: 10.1088/1572-9494/aba242 – volume: 81 start-page: 044019 year: 2010 ident: ref_62 article-title: Multipolar equations of motion for extended test bodies in general relativity publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.044019 – volume: 15 start-page: 2724 year: 1977 ident: ref_47 article-title: Spinning Charged Test Particles in a Kerr-Newman Background publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2724 – volume: 49 start-page: 48 year: 2017 ident: ref_73 article-title: Dynamics of extended bodies with spin-induced quadrupole in Kerr spacetime: Generic orbits publication-title: Gen. Relat. Grav. doi: 10.1007/s10714-017-2214-y – volume: 50 start-page: 150 year: 2018 ident: ref_72 article-title: Nonequatorial circular orbits of spinning particles in the Schwarzschild-de Sitter background publication-title: Gen. Relat. Grav. doi: 10.1007/s10714-018-2474-1 – volume: 91 start-page: 124030 year: 2015 ident: ref_79 article-title: Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.124030 – volume: 97 start-page: 064024 year: 2018 ident: ref_75 article-title: Energy extraction of a spinning particle via the super Penrose process from an extremal Kerr black hole publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.064024 – ident: ref_27 – ident: ref_30 doi: 10.1016/j.physletb.2020.135907 – volume: 74 start-page: 124006 year: 2006 ident: ref_48 article-title: Dynamics of Extended Spinning Masses in a Gravitational Field publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.124006 – volume: 102 start-page: 024025 year: 2020 ident: ref_36 article-title: Derivation of Regularized Field Equations for the Einstein-Gauss-Bonnet Theory in Four Dimensions publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.024025 – ident: ref_87 – volume: 6 start-page: 406 year: 1972 ident: ref_52 article-title: Gravitational spin interaction publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.6.406 – volume: 18 start-page: 393 year: 1959 ident: ref_57 article-title: Motion of multipole particles in general relativity theory publication-title: Acta Phys. Pol. – volume: 368 start-page: 198 year: 1996 ident: ref_12 article-title: Maximally Symmetric Cosmological Solutions of higher curvature string effective theories with dilatons publication-title: Phys. Lett. B doi: 10.1016/0370-2693(95)01519-1 – volume: 2020 start-page: 013 year: 2020 ident: ref_35 article-title: Effective scalar-tensor description of regularized Lovelock gravity in four dimensions publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/07/013 – volume: 100 start-page: 104052 year: 2019 ident: ref_80 article-title: Spinning test particle in the γ space-times publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.104052 – volume: 96 start-page: 124013 year: 2017 ident: ref_60 article-title: Relativistic effects due to gravimagnetic moment of a rotating body publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.124013 – volume: 55 start-page: 2656 year: 1985 ident: ref_14 article-title: String-generated gravity models publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2656 – volume: 80 start-page: 35 year: 2020 ident: ref_81 article-title: Bounds on spinning particles in their innermost stable circular orbits around rotating braneworld black hole publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7584-8 – volume: 49 start-page: 319 year: 1999 ident: ref_69 article-title: Equilibrium of spinning test particles in the Schwarzschild-de Sitter spacetimes publication-title: Acta Phys. Slov. – volume: 94 start-page: 044008 year: 2016 ident: ref_50 article-title: Gyroscopes orbiting black holes: A frequency-domain approach to precession and spin-curvature coupling for spinning bodies on generic Kerr orbits publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.044008 – volume: 6 start-page: 163 year: 1937 ident: ref_42 article-title: New mechanics of material systems publication-title: Acta Phys. Pol. – volume: 169 start-page: 36 year: 1986 ident: ref_15 article-title: Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term publication-title: Phys. Lett. B doi: 10.1016/0370-2693(86)90681-7 – volume: 97 start-page: 084056 year: 2018 ident: ref_68 article-title: Innermost stable circular orbit of spinning particle in charged spinning black hole background publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.084056 – volume: 314 start-page: 529 year: 1970 ident: ref_9 article-title: The Singularities of gravitational collapse and cosmology publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1970.0021 – volume: 65 start-page: 084014 year: 2002 ident: ref_17 article-title: Gauss-Bonnet black holes in AdS spaces publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.084014 – volume: 33 start-page: 105014 year: 2016 ident: ref_51 article-title: Collisions of spinning massive particles in a Schwarzschild background publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/33/10/105014 – volume: 116 start-page: 061102 year: 2016 ident: ref_1 article-title: [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of Gravitational Waves from a Binary Black Hole Merger publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – ident: ref_31 doi: 10.1140/epjc/s10052-020-08568-6 – volume: 58 start-page: 023005 year: 1998 ident: ref_39 article-title: Innermost stable circular orbit of a spinning particle in Kerr space-time publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.023005 – ident: ref_29 doi: 10.1016/j.physletb.2020.135843 – volume: 96 start-page: 104023 year: 2017 ident: ref_56 article-title: Time parameterizations and spin supplementary conditions of the Mathisson- Papapetrou-Dixon equations publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.104023 – volume: 82 start-page: 103005 year: 2010 ident: ref_7 article-title: Charged spinning black holes as Particle Accelerators publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.103005 – volume: 82 start-page: 084013 year: 2010 ident: ref_63 article-title: Gravitational Radiations from a Spinning Compact Object around a supermassive Kerr black hole in circular orbit publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.084013 – volume: 2017 start-page: 7397159 year: 2017 ident: ref_61 article-title: Recent progress on the description of relativistic spin: Vector model of spinning particle and rotating body with gravimagnetic moment in General Relativity publication-title: Adv. Math. Phys. doi: 10.1155/2017/7397159 – volume: 778 start-page: 54 year: 2018 ident: ref_76 article-title: Collisional Penrose process with spinning particles publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.01.003 – volume: 80 start-page: 588 year: 2020 ident: ref_38 article-title: The innermost stable circular orbit and shadow in the novel 4D Einstein-Gauss-Bonnet gravity publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8164-7 – volume: 79 start-page: 856 year: 2019 ident: ref_88 article-title: Motion deviation of test body induced by spin and cosmological constant in extreme mass ratio inspiral binary system publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7334-y – volume: 103 start-page: 111102 year: 2009 ident: ref_6 article-title: Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.111102 – volume: 805 start-page: 135468 year: 2020 ident: ref_21 article-title: Charged Black Holes in AdS Spaces in 4D Einstein Gauss-Bonnet Gravity publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135468 – volume: 80 start-page: 31 year: 2020 ident: ref_84 article-title: Maximal efficiency of the collisional Penrose process with spinning particles in Kerr-Sen black hole publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7605-7 – volume: 90 start-page: 104019 year: 2014 ident: ref_53 article-title: Investigating spinning test particles: Spin supplementary conditions and the Hamiltonian formalism publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.104019 – volume: 119 start-page: 141101 year: 2017 ident: ref_4 article-title: [LIGO Scientific Collaboration and Virgo Collaboration]. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.141101 – ident: ref_34 doi: 10.1016/j.physletb.2020.135717 – volume: 97 start-page: 084023 year: 2018 ident: ref_54 article-title: On spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.084023 – volume: 2016 start-page: 1376016 year: 2016 ident: ref_59 article-title: Ultrarelativistic Spinning Particle and a Rotating Body in External Fields publication-title: Adv. High Energy Phys. doi: 10.1155/2016/1376016 – volume: 209 start-page: 248 year: 1951 ident: ref_43 article-title: Spinning test-particles in general relativity. I publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1951.0200 – volume: 789 start-page: 393 year: 2019 ident: ref_66 article-title: Innermost stable circular orbits of charged spinning test particles publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.12.051 – volume: 88 start-page: 024006 year: 2013 ident: ref_19 article-title: Einstein gravity with Gauss-Bonnet entropic corrections publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.024006 – volume: 19 start-page: 951 year: 1949 ident: ref_86 article-title: On crcular orbits in Einstein’s Gravitation Theory publication-title: J. Exp. Theor. Phys. – volume: 99 start-page: 104059 year: 2019 ident: ref_83 article-title: Properties of the Innermost Stable Circular Orbit of a spinning particle moving in a rotating Maxwell-dilaton black hole background publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104059 – ident: ref_22 doi: 10.1140/epjp/s13360-021-01398-9 – volume: 14 start-page: 57 year: 1965 ident: ref_8 article-title: Gravitational collapse and space-time singularities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.14.57 – volume: 277 start-page: 1 year: 1986 ident: ref_10 article-title: Superstring Modifications of Einstein’s Equations publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90429-3 – ident: ref_20 doi: 10.1140/epjc/s10052-020-08639-8 – ident: ref_23 doi: 10.1103/PhysRevD.101.084038 – volume: 96 start-page: 064038 year: 2017 ident: ref_71 article-title: Highly relativistic spin-gravity-Λ coupling publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.064038 – volume: 116 start-page: 241103 year: 2016 ident: ref_2 article-title: [LIGO Scientific Collaboration and Virgo Collaboration]. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.241103 – volume: 36 start-page: 075003 year: 2019 ident: ref_78 article-title: Hamiltonians and canonical coordinates for spinning particles in curved space-time publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab002f – volume: 291 start-page: 41 year: 1987 ident: ref_11 article-title: The Quartic Effective Action for the Heterotic String publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(87)90465-2 – ident: ref_46 – volume: 2020 start-page: 27 year: 2020 ident: ref_28 article-title: On Taking the D→4 limit of Gauss-Bonnet Gravity: Theory and Solutions publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2020)027 – volume: 23 start-page: 3935 year: 2006 ident: ref_70 article-title: Equilibrium conditions of spinning test particles in Kerr-de Sitter spacetimes publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/23/11/016 – ident: ref_89 – volume: 74 start-page: 104033 year: 2006 ident: ref_77 article-title: Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.104033 – volume: 191 start-page: 499 year: 1974 ident: ref_37 article-title: Disk-accretion onto a black hole. Time-averaged structure of accretion disk publication-title: Astrophys. J. doi: 10.1086/152990 – volume: 94 start-page: 124017 year: 2016 ident: ref_82 article-title: Charged spinning black holes as accelerators of spinning particles publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.124017 – ident: ref_33 doi: 10.1088/1674-1137/abc1d4 – volume: 733 start-page: 183 year: 2014 ident: ref_41 article-title: Thermodynamics of Conformal Anomaly Corrected Black Holes in AdS Space publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.04.044 – volume: 96 start-page: 064051 year: 2017 ident: ref_55 article-title: Spinning test-body orbiting around a Kerr black hole: Circular dynamics and gravitational-wave fluxes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.064051 – volume: 88 start-page: 024042 year: 2013 ident: ref_67 article-title: Equatorial circular orbits of neutral test particles in the Kerr Newman spacetime publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.024042 – volume: 319 start-page: 509 year: 1970 ident: ref_45 article-title: Dynamics of extended bodies in general relativity II. Moments of the charge-current vector publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1970.0191 |
SSID | ssj0001759978 |
Score | 2.4413357 |
Snippet | In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 103 |
SubjectTerms | Black holes Gauss–Bonnet Gravitational waves innermost stable circular orbits Orbits Spacetime spinning test particle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP3E6JQcPXurSJk2bo9PNISgDN9itJGkCBanDdnf_B_9D_xJf0m4MRbx4KoSEhpe8974vPL6H0KUgWjGWREHEKHGvVRAHNeWBSFPuJJ6s8vLFj098PGMP83i-0erL1YQ18sCN4fpO7cVYLUicE6ZpLrSOQgo4RQlCZGpc9IWct0Gm_OtKEgvgR42WDwVe3182dQ6GA0QKVy2y2jTk1fp_BGOfYUZ7aLeFhvim2dI-2jLlAdr2JZq6OkST50Xh-wvhKSzGk3bruCjxCJYGd06nv9HYwMMCUJ8pys_3j3u5rCr4DlxFS439gx0eOxmnIzQbDae346DthxBoCAN1EEtpNLexFEKCI0qlchjPOcktk5wnIg-5TqyiIVPKplwoYEeJ0ZIBiRImoseoU76W5gRhncdMgbdaaZ08TCgktSayxAqHX2jaRdcr82S6FQt3PSteMiANzp7ZN3t20dV6waLRyfh96sDZez3NCVz7ATj2rLVd9texd1FvdVpZ63VVBnBDAKILo-T0P_5xhnYix65JEkRpD3Xqt6U5BwhSqwt_274A7AvbMA priority: 102 providerName: Directory of Open Access Journals |
Title | Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes |
URI | https://www.proquest.com/docview/2429505127 https://doaj.org/article/7055efc905d04c3d9cc213161b900a8e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-ELyIT6wvcvDgZTW7yWY3J7HaWgRL8QHeliSbSEG21W3v_gf_ob_ESTa1oOhpIZu5TDKPbzJ8g9CxIFoxliVRwihx1Srwg5rySOQ5dxRPVnn64ts-7z2ym6f0KRTc6tBWOfOJ3lGXI-1q5GcQSgRE6zjJzsevkZsa5V5XwwiNRbQMLjgH8LXc7vQHd_MqS5YKwEkNpw8FfH82bfodDIdUKZ6NygrhyLP2_3LKPtJ019FaSBHxRXOmG2jBVJtoxbdq6noLDe7HQz9nCD-AMB6Es8fDCndBNLpyfP0N1wbuDCH7M8Pq8_3jWk7rGr5t19kywb5wh3uOzmkbPXY7D5e9KMxFiDS4g0mUSmk0t6kUQoJBSqVKWC85KS2TnGeijLnOrKIxU8rmXChASZnRkgGYEiahO2ipGlVmF2FdpkyB1VppHU1MLCS1JrHECpfH0LyFTmfqKXQgDXezK14KAA9On8UPfbbQybfAuOHL-Htr2-n7e5sjuvYLo7fnIuiucGQ_xmpB0pIwTUuhdRJTSFOVIETmpoUOZqdVBOuri_ld2fv_9z5aTRx-JlmU5AdoafI2NYeQZEzUUbhJRx6kfwHtX9Vi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqrRBcUPkTCwV8AIlLqGM7TnxAqEt32dJ2tYKt1FuwHbtaCWW3za4QN96h79GH6pMwk59WAsGtp0iO5zIez18m30fIa82clTLlEZeCYbcK_KATKtJZphDiKdgavvhoosbH8vNJcrJBLrt_YXCssvOJtaMuFg575DsQSjRE65inH5ZnEbJG4dfVjkKjMYsD__MHlGzV-_09ON83nI-Gs4_jqGUViBxcplWUGOOdConR2oA5G2sLWC8UK4I0SqW6iJVLgxWxtDZkSluoMVLvjIRSRHsEOgCXvykFlDI9sjkYTqZfbro6aaKhLmswhITQbGfdzFd4BalZ3FFzteGvZgn4KwjUkW20Re63KSndbWzoAdnw5UNypx4NddUjMv26nNe8RnQGwnTa2hqdl3QEotEe8gM02B50OIds08_Lq18Xn8y6quA5wEmaFa0bhXSM8FGPyfGtaOwJ6ZWL0j8l1BWJtOAlggkISxNrI4LngQWNeZPI-uRdp57ctSDlyJXxPYdiBfWZ_6HPPnl7LbBs8Dn-vXWA-r7ehsDa9cLi_DRvdZcjuJAPTrOkYNKJQjvHYwFpsdWMmcz3yXZ3Wnl726v8xjaf_f_1K3J3PDs6zA_3JwfPyT2OtTtLI55tk97qfO1fQIKzsi9bq6Lk220b8m-E9BJd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB6tugJxQfyKwgI-gMQlrJM4TnxAiNKWLgtVBbvS3oLt2KtKKC2bVogb78Db8Dg8CTOJsyuB4LanSI59GX-emc-ZfAPwRHFrhMiTKBEpp9sq9IM2lZEqCkkST9608sXv53J2LN6eZCc78LP_F4bKKnuf2DrqamXpjnwfQ4nCaB0jVfehLGIxnr5cf4mogxR9ae3baXQQOXTfviJ9a14cjHGvnybJdHL0ehaFDgORxYO1iTKtnZU-00pphLY2psLxSvLKCy1lrqpY2tybNBbG-EIqg3wjd1YLpCXKkegBuv_dHFkRH8DuaDJffLi44ckzhRyt0xNKU8X3t12thZOYpsV9m64QCtuOAX8FhDbKTW_A9ZCeslcdnm7CjqtvwZW2TNQ2t2Hxcb1sexyxI1zMFgF3bFmzKS6NxtQroNP5YJMlZp5uWf_6_uON3jYNPkdUVbNh7aUhm5GU1B04vhSL3YVBvardPWC2yoRBj-G1J4maWOnUu8RzryiHSoshPO_NU9ogWE59Mz6XSFzInuUf9hzCs_MF606r499TR2Tv82kkst0OrM5Oy2C7koSGnLeKZxUXNq2UtUmcYopsFOe6cEPY63erDCe_KS9wev__rx_DVQRw-e5gfvgAriVE43keJcUeDDZnW_cQc52NeRRAxeDTZeP4N8phFpI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinning+Test+Particle+in+Four-Dimensional+Einstein%E2%80%93Gauss%E2%80%93Bonnet+Black+Holes&rft.jtitle=Universe+%28Basel%29&rft.au=Yu-Peng%2C+Zhang&rft.au=Shao-Wen%2C+Wei&rft.au=Yu-Xiao%2C+Liu&rft.date=2020-07-28&rft.pub=MDPI+AG&rft.eissn=2218-1997&rft.volume=6&rft.issue=8&rft.spage=103&rft_id=info:doi/10.3390%2Funiverse6080103&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-1997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-1997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-1997&client=summon |