Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes

In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of...

Full description

Saved in:
Bibliographic Details
Published inUniverse (Basel) Vol. 6; no. 8; p. 103
Main Authors Zhang, Yu-Peng, Wei, Shao-Wen, Liu, Yu-Xiao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter α is nearly in a special range −8<α/M2<−2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2218-1997
2218-1997
DOI:10.3390/universe6080103