Further Investigation into Split Common Fixed Point Problem for Demicontractive Operators

Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have u...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 32; no. 11; pp. 1357 - 1376
Main Authors Shehu, Yekini, Mewomo, Oluwatosin T.
Format Journal Article
LanguageEnglish
Published Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.
Bibliography:Demicontractive mappings, split common fixed point problems, iterative scheme, strongconvergence, Hilbert spaces
11-2039/O1
Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-016-5548-6