Sulfate Attack Resistance of Air-entrained Silica Fume Concrete under Dry-Wet Cycle Condition

Based on the erosion resistant coefficient,the effects of water-cement ratio,air-entrained,silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet...

Full description

Saved in:
Bibliographic Details
Published inJournal of Wuhan University of Technology. Materials science edition Vol. 31; no. 4; pp. 857 - 864
Main Authors Yang, Jiansen, Wang, Peiming, Li, Haoxin, Yang, Xu
Format Journal Article
LanguageEnglish
Published Wuhan Wuhan University of Technology 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the erosion resistant coefficient,the effects of water-cement ratio,air-entrained,silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition.A more significant model of concrete resistance to sulfate attack was also established,thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete.The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack,and leads to the remarkable declines of concrete strength and sulfate resistance.Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt.However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure,and then the air bubbles are filled with sulfate salt crystallization.The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio,6.0% air-entrained,5% silica fume and 30% sand ratio.The erosion resistant coefficients K80 and K150 of this concrete are increased by 9%,7%,9%,and 5% respectively as compared with those of concretes without silica fume and air entraining.
Bibliography:42-1680/TB
silica erosion filled crystalline remarkable binder compressive pores running hydration
Based on the erosion resistant coefficient,the effects of water-cement ratio,air-entrained,silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition.A more significant model of concrete resistance to sulfate attack was also established,thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete.The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack,and leads to the remarkable declines of concrete strength and sulfate resistance.Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt.However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure,and then the air bubbles are filled with sulfate salt crystallization.The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio,6.0% air-entrained,5% silica fume and 30% sand ratio.The erosion resistant coefficients K80 and K150 of this concrete are increased by 9%,7%,9%,and 5% respectively as compared with those of concretes without silica fume and air entraining.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1000-2413
1993-0437
DOI:10.1007/s11595-016-1459-8