New algorithm of white-light phase shifting interferometry pursing higher repeatability by using numerical phase error correction schemes of pre-processor, main processor, and post-processor

White-light phase shifting interferometry (WLPSI) is frequently used for the precision measurement of 3D patterns in various fields. Phase error is one of the most dominant errors in WLPSI, and it is mainly generated by the scanner positioning error and mechanical vibrations. In this paper, phase er...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 46; no. 2; pp. 140 - 148
Main Authors Kim, Jung-Hwan, Yoon, Sung-Won, Lee, Jeong-Ho, Ahn, Woo-Jung, Pahk, Heui-Jae
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:White-light phase shifting interferometry (WLPSI) is frequently used for the precision measurement of 3D patterns in various fields. Phase error is one of the most dominant errors in WLPSI, and it is mainly generated by the scanner positioning error and mechanical vibrations. In this paper, phase error detection method by image analysis is proposed, and the numerical correction method for minimizing the phase error is also proposed. The image reconstruction method (IRM), iterative IRM (IIRM) as pre-processors, partial IRM (PIRM), least squares method (LSM) as a main processor, and surface compensation method (SCM) as a post-processor were developed for correcting phase errors. The five methods are implemented and simulated, and the pros and cons of each method are explained. Mirau type interferometry and the phase error generator using a PZT stage were used, and the measurements by WLPSI were done under various vibration conditions. The captured images were analyzed by the five correction methods, and the results were compared. Phase error was effectively minimized by the correction methods, and repeatability of 0.2 nm was obtained in the case of the specimen of 500 nm in height. Repeatability of 10 nm was obtained by conventional WLPSI algorithms for the same specimen.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0143-8166
1873-0302
DOI:10.1016/j.optlaseng.2007.08.008