Regulation of all members of the antizyme family by antizyme inhibitor

ODC (ornithine decarboxylase) is the rate-limiting enzyme in polyamine biosynthesis. Polyamines are essential for cellular growth and differentiation but enhanced ODC activity is associated with cell transformation. Post-translationally, ODC is negatively regulated through members of the antizyme fa...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 385; no. Pt 1; pp. 21 - 28
Main Authors Mangold, Ursula, Leberer, Ekkehard
Format Journal Article
LanguageEnglish
Published England Portland Press Ltd 01.01.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ODC (ornithine decarboxylase) is the rate-limiting enzyme in polyamine biosynthesis. Polyamines are essential for cellular growth and differentiation but enhanced ODC activity is associated with cell transformation. Post-translationally, ODC is negatively regulated through members of the antizyme family. Antizymes inhibit ODC activity, promote ODC degradation through the 26 S proteasome and regulate polyamine transport. Besides the ubiquitously expressed antizymes 1 and 2, there is the tissue-specific antizyme 3 and an yet uncharacterized antizyme 4. Antizyme 1 has been shown to be negatively regulated through the AZI (antizyme inhibitor) that binds antizyme 1 with higher affinity compared with ODC. In the present study, we show by yeast two- and three-hybrid protein-protein interaction studies that AZI interacts with all members of the antizyme family and is capable of disrupting the interaction between each antizyme and ODC. In a yeast-based ODC complementation assay, we show that human ODC is able to complement fully the function of the yeast homologue of ODC. Co-expression of antizymes resulted in ODC inhibition and cessation of yeast growth. The antizyme-induced growth inhibition could be reversed by addition of putrescine or by the co-expression of AZI. The protein interactions could be confirmed by immunoprecipitation of the human ODC-antizyme 2-AZI complexes. In summary, we conclude that human AZI is capable of acting as a general inhibitor for all members of the antizyme family and that the previously not yet characterized antizyme 4 is capable of binding ODC and inhibiting its enzymic activity similar to the other members of the antizyme family.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-6021
1470-8728
DOI:10.1042/BJ20040547