Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite

Copper-coated woven carbon fiber-reinforced aluminum alloy composite was prepared by spark plasma sintering (SPS). Microstructure, three-point bending mechanical property, and the failure mechanisms of the composite were investigated. Microstructure observation shows that the carbon fibers bond comp...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 35; no. 12; pp. 915 - 919
Main Authors Yang, Qiu-Rong, Liu, Jin-Xu, Li, Shu-Kui, Wu, Teng-Teng
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.12.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Copper-coated woven carbon fiber-reinforced aluminum alloy composite was prepared by spark plasma sintering (SPS). Microstructure, three-point bending mechanical property, and the failure mechanisms of the composite were investigated. Microstructure observation shows that the carbon fibers bond compactly with matrix alloy. Compared with the matrix aluminum alloy, the bending strength, ductility, fracture energy, and cracking resistance of the composite are evidently improved. Microstructure analyses reveal that the high specific strength of carbon fibers and transfer of stress from matrix alloy to carbon fibers are responsible for the increase of the composite bending strength. The expanding of cracks is restrained, and cracking resistance of the composite is improved by adding woven carbon fiber. Attributed to the carbon fibers' debonding, cracks deflection, and multipath propagation mechanisms, the fracture energy of the composite increases.
Bibliography:Carbon fibers; Aluminum alloy; Composites;Bending strength; Mechanisms
Copper-coated woven carbon fiber-reinforced aluminum alloy composite was prepared by spark plasma sintering (SPS). Microstructure, three-point bending mechanical property, and the failure mechanisms of the composite were investigated. Microstructure observation shows that the carbon fibers bond compactly with matrix alloy. Compared with the matrix aluminum alloy, the bending strength, ductility, fracture energy, and cracking resistance of the composite are evidently improved. Microstructure analyses reveal that the high specific strength of carbon fibers and transfer of stress from matrix alloy to carbon fibers are responsible for the increase of the composite bending strength. The expanding of cracks is restrained, and cracking resistance of the composite is improved by adding woven carbon fiber. Attributed to the carbon fibers' debonding, cracks deflection, and multipath propagation mechanisms, the fracture energy of the composite increases.
11-2112/TF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-014-0271-x