Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca2+-ATPase 2a

Abstract We previously found that luteolin (Lut) appeared to improve the contractility of cardiomyocytes during ischemia/reperfusion in rats. The enhancement was associated with the alteration in sarcoplasmic reticulum Ca 2+ -ATPase 2a (SERCA2a). This finding prompted us to consider if the mechanism...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; p. 41017
Main Authors Hu, Wenjing, Xu, Tongda, Wu, Pei, Pan, Defeng, Chen, Junhong, Chen, Jing, Zhang, Buchun, Zhu, Hong, Li, Dongye
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 23.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract We previously found that luteolin (Lut) appeared to improve the contractility of cardiomyocytes during ischemia/reperfusion in rats. The enhancement was associated with the alteration in sarcoplasmic reticulum Ca 2+ -ATPase 2a (SERCA2a). This finding prompted us to consider if the mechanism worked in heart failure (HF). We studied the regulation of SERCA2a by Lut in failing cardiomyocytes and intact heart of rats. Improvement of contractility and the mechanisms centered on SERCA2a were studied in isolated cardiomyocytes and intact heart. We found that Lut significantly improved contractility and Ca 2+ transients, ameliorated expression, activity and stability of SERCA2a and upregulated expression of small ubiquitin-related modifier (SUMO) 1, which is a newfound SERCA2a regulator. Lut also increased phosphorylation of protein kinase B (Akt), phospholaban (PLB) and sumoylation of SERCA2a, specificity protein 1 (Sp1). Transcriptions of SUMO1 and SERCA2a were concurrently increased. Inhibition of posphatidylinositol 3 kinase/Akt (PI3K/Akt) pathway and SERCA2a activity both markedly abolished Lut-induced benefits in vitro and in vivo . Lut upregulated the expression ratio of Bcl-2/Bax, caspase-3/cleaved-Caspase3. Meanwhile, Lut ameliorated the myocardium fibrosis of HF. These discoveries provide an important potential therapeutic strategy that Lut targeted SERCA2a SUMOylation related to PI3K/Akt-mediated regulations on rescuing the dysfunction of HF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep41017