A DFT study on PtMo resistance to SO2 poisoning
Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a de...
Saved in:
Published in | Science China. Chemistry Vol. 56; no. 7; pp. 1004 - 1008 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a density function theory (DFT) study on SOx adsorbed on Pt(111) and PtMo(111) was performed to enhance Pt catalytic activity. The adsorption energy of adsorbed species, the net change, partial density of state (PDOS), and d-band center were calculated and analyzed comparatively. The results show that the presence of Mo-atom weakens the S-Pt bond strength and reduces the adsorption energies for SO2, S and SO3 on PtMo(111). Moreover, the Mo atom weakens the effects of SO2 on the PtMo(lll) electronic structure and makes the catalyst maintains its original electronic structure after SO2 adsorption as compared with Pt(111). |
---|---|
Bibliography: | Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a density function theory (DFT) study on SOx adsorbed on Pt(111) and PtMo(111) was performed to enhance Pt catalytic activity. The adsorption energy of adsorbed species, the net change, partial density of state (PDOS), and d-band center were calculated and analyzed comparatively. The results show that the presence of Mo-atom weakens the S-Pt bond strength and reduces the adsorption energies for SO2, S and SO3 on PtMo(111). Moreover, the Mo atom weakens the effects of SO2 on the PtMo(lll) electronic structure and makes the catalyst maintains its original electronic structure after SO2 adsorption as compared with Pt(111). density functional theory, SO2, Pt, PtMo, partial density of states, fuel cells, electrocatalysis 11-5839/O6 |
ISSN: | 1674-7291 1869-1870 |
DOI: | 10.1007/s11426-013-4893-x |