Transplantation of IFN-γ Primed hUCMSCs Significantly Improved Outcomes of Experimental Autoimmune Encephalomyelitis in a Mouse Model

s The aim of this study was to investigate potential therapeutic effects of IFN-γ primed human umbilical cord mesenchymal stem cell (IFN-γ-hUCMSCs) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. In this study, EAE mouse model was established by MOG35-55 immunization meth...

Full description

Saved in:
Bibliographic Details
Published inNeurochemical research Vol. 45; no. 7; pp. 1510 - 1517
Main Authors Zhou, Xiaoyan, Liu, Xiaoli, Liu, Li, Han, Chao, Xie, Zhaohong, Liu, Xiangtian, Xu, Yingying, Li, Fan, Bi, Jianzhong, Zheng, Chengyun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:s The aim of this study was to investigate potential therapeutic effects of IFN-γ primed human umbilical cord mesenchymal stem cell (IFN-γ-hUCMSCs) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. In this study, EAE mouse model was established by MOG35-55 immunization method. Outcomes of the EAE mice in terms of body weight and clinical symptoms were analyzed. Electromyography (EMG) was performed to evaluate nerve conduction. ELISA was applied to quantify inflammatory cytokine levels in serum. Our results showed that IFN-γ could up-regulate protein expression of indoleamine 2, 3-dioxygenease 1 (IDO1), an important molecule released by MSCs to exert their immune suppressive activity ( p  < 0.01). In this study treatment efficacy for EAE was compared between transplantation of hUCMSCs alone and the IFN-γ-hUCMSCs which were cultured in the presence of IFN-γ for 48 h prior to be harvested for transplantation. Compared with hUCMSCs alone and control (PBS transfusion) group, transplantation of the IFN-γ-hUCMSCs could significantly alleviate the body weight loss and clinical symptoms of EAE mice ( p  < 0.05). Consistently EMG latency was significantly improved in treatment groups ( p  < 0.001), and the IFN-γ-hUCMSCs group was even better than the hUCMSCs group ( p  < 0.05). Moreover, the concentrations of IL-17A and TNF-α in serum of the mice treated by IFN-γ-hUCMSCs were significantly lower than hUCMSCs alone and controls, respectively ( p  < 0.05). In few of the roles of IL-17A and TNF-α in the pathogenesis of EAE, IFN-γ-hUCMSCs treatment associated-suppression of IL-17A and TNF-α expression may contribute in part to their therapeutic effects on EAE. In sum, our study highlights a great clinical potential of IFN-γ-hUCMSCs for multiple sclerosis (MS) treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0364-3190
1573-6903
1573-6903
DOI:10.1007/s11064-020-03009-y