Dual-state dual emission from precise chemically engineered bi-ligand MOF free from encapsulation and functionalization with self-calibration model for visual detection
Synthesis of dual-state dual emitting metal–organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic...
Saved in:
Published in | Mikrochimica acta (1966) Vol. 191; no. 1; p. 62 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synthesis of dual-state dual emitting metal–organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic DSDE of chemically engineered bi-ligand Eu-based MOF (UoZ-1) was designed. The prepared UoZ-1 spherical particles were small-sized around 10–12 nm and displayed blue (425 nm) and red fluorescence (620 nm) at both states, dispersed in liquid and in solid state, when excited at 250 nm. A ratiometry platform was developed since the red emission was quenched by the addition of folic acid and the blue emission was almost remained unaffected. In the fluorometric ratiometric-mode, a dynamic linear range was recorded from 10 to 200 µM with LOD about 0.4 µM. Visual-based detection with assistance of smartphone was developed for quantification based on RGB analysis using Color Grab App. In the visual-mode, LOD as small as 2.3 µM was recorded. By utilizing the intrinsic dual-emitting UoZ-1, highly stable, recyclable, sensitive, and selective on-site visual detection of folic acid can be achieved. UoZ-1, a DSDE-MOF with no encapsulation or functionalization requirements, exhibits great potential for diverse applications.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0026-3672 1436-5073 |
DOI: | 10.1007/s00604-023-06148-5 |