Dual-state dual emission from precise chemically engineered bi-ligand MOF free from encapsulation and functionalization with self-calibration model for visual detection

Synthesis of dual-state dual emitting metal–organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 191; no. 1; p. 62
Main Authors Ameen, Sameera Sh. Mohammed, Qader, Idrees B., Qader, Hemn A., Algethami, Faisal K., Abdulkhair, Babiker Y., Omer, Khalid M.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthesis of dual-state dual emitting metal–organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic DSDE of chemically engineered bi-ligand Eu-based MOF (UoZ-1) was designed. The prepared UoZ-1 spherical particles were small-sized around 10–12 nm and displayed blue (425 nm) and red fluorescence (620 nm) at both states, dispersed in liquid and in solid state, when excited at 250 nm. A ratiometry platform was developed since the red emission was quenched by the addition of folic acid and the blue emission was almost remained unaffected. In the fluorometric ratiometric-mode, a dynamic linear range was recorded from 10 to 200 µM with LOD about 0.4 µM. Visual-based detection with assistance of smartphone was developed for quantification based on RGB analysis using Color Grab App. In the visual-mode, LOD as small as 2.3 µM was recorded. By utilizing the intrinsic dual-emitting UoZ-1, highly stable, recyclable, sensitive, and selective on-site visual detection of folic acid can be achieved. UoZ-1, a DSDE-MOF with no encapsulation or functionalization requirements, exhibits great potential for diverse applications. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-023-06148-5