Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review
Purpose Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings. Methods Stud...
Saved in:
Published in | European journal of nuclear medicine and molecular imaging Vol. 51; no. 7; pp. 1876 - 1890 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1619-7070 1619-7089 1619-7089 |
DOI | 10.1007/s00259-024-06631-y |
Cover
Loading…
Abstract | Purpose
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings.
Methods
Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.
Results
Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [
18
F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (
n
> 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [
123
I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP.
Conclusion
Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings. |
---|---|
AbstractList | Purpose
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings.
Methods
Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.
Results
Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [
18
F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (
n
> 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [
123
I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP.
Conclusion
Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings. PurposeEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings.MethodsStudies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.ResultsSensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [18F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP.ConclusionMolecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings. Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings.PURPOSEEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings.Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.METHODSStudies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP.RESULTSSensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP.Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.CONCLUSIONMolecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings. Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [ F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [ I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings. |
Author | Nicolosi, Valentina Massa, Federico Orini, Stefania Frisoni, Giovanni B. Garibotto, Valentina Cotta Ramusino, Matteo Nobili, Flavio Morbelli, Silvia Gandolfo, Federica Festari, Cristina |
Author_xml | – sequence: 1 givenname: Matteo orcidid: 0000-0003-3090-9648 surname: Cotta Ramusino fullname: Cotta Ramusino, Matteo email: matteo.cottaramusino01@universitadipavia.it organization: Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation – sequence: 2 givenname: Federico surname: Massa fullname: Massa, Federico organization: Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Ospedale Policlinico San Martino – sequence: 3 givenname: Cristina surname: Festari fullname: Festari, Cristina organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli – sequence: 4 givenname: Federica surname: Gandolfo fullname: Gandolfo, Federica organization: Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital – sequence: 5 givenname: Valentina surname: Nicolosi fullname: Nicolosi, Valentina organization: UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9 – sequence: 6 givenname: Stefania surname: Orini fullname: Orini, Stefania organization: Alzheimer’s Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Department of Clinical and Experimental Sciences, University of Brescia – sequence: 7 givenname: Flavio surname: Nobili fullname: Nobili, Flavio organization: IRCCS Ospedale Policlinico San Martino – sequence: 8 givenname: Giovanni B. surname: Frisoni fullname: Frisoni, Giovanni B. organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals – sequence: 9 givenname: Silvia surname: Morbelli fullname: Morbelli, Silvia organization: IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa – sequence: 10 givenname: Valentina surname: Garibotto fullname: Garibotto, Valentina organization: Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, CIBM Center for Biomedical Imaging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38355740$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URH_gBVggS2zYBPyTxAk7VGhBqsQG1pZjj1NXsX2xnVb3VXhaHG4LUhddeTz6zujMnFN0FGIAhF5T8p4SIj5kQlg3NoS1Del7Tpv9M3RCezo2ggzj0b9akGN0mvMNIXRgw_gCHfOBd51oyQn6_dmpOcRcnMY7SDYmr4IGHC32cQG9Liph59Xswow9lOtoMnYB7xIYp8vWLddQv3FOkLOLAdsUPfZuMVjHObjibqFO2CmXPISCS8QGtsqpj1gFvO6MKmBw3ucCXm1GEtw6uHuJnlu1ZHh1_56hnxdffpx_ba6-X347_3TVaC660lhqgGlg1iomNB-ZaaFtNSFaKMqobYFOfdsZMU2DsrozmnBFupHW_SdOOD9D7w5z6xK_VshFepc1LIsKENcs2cgEo4yzDX37CL2JawrVneSkZ2wQ47hRb-6pdfJg5C7VA6a9fLh6BYYDoFPMOYGV2pW6eQwlKbdISuQWsDwELGvA8m_Acl-l7JH0YfqTIn4Q5QqHGdJ_20-o_gDKObxQ |
CitedBy_id | crossref_primary_10_1007_s00259_024_06917_1 crossref_primary_10_3390_diagnostics14222474 crossref_primary_10_3233_ADR_240104 crossref_primary_10_1093_geront_gnae075 crossref_primary_10_1177_25424823241312108 crossref_primary_10_1186_s13195_024_01535_3 |
Cites_doi | 10.1136/bmj.j4008 10.1186/s13195-017-0260-z 10.1007/s00259-018-4019-y 10.1007/s00259-020-05187-x 10.1016/j.jalz.2011.03.008 10.1016/j.bbr.2018.02.017 10.3389/fneur.2020.540291 10.1016/j.nicl.2018.03.007 10.1017/S0033291718000995 10.1177/0271678X17732508 10.1109/TMI.2020.3022591 10.3233/JAD-170833 10.1212/WNL.0b013e31823b9c5e 10.2967/jnumed.122.264256 10.1111/ene.13728 10.1016/j.jalz.2011.03.005 10.1016/j.neurobiolaging.2016.02.035 10.1038/s41598-021-93442-y 10.3233/JAD-170395 10.1097/MNM.0000000000001102 10.1016/j.dadm.2018.07.009 10.1002/mds.27603 10.1212/WNL.0000000000008818 10.1002/hbm.25133 10.1007/s00415-020-09790-8 10.1016/j.neurobiolaging.2020.12.009 10.1016/j.jns.2017.11.039 10.1001/jamaneurol.2021.1858 10.3233/JAD-190818 10.1186/s13195-019-0473-4 10.1038/s41598-018-31653-6 10.1007/s00259-021-05483-0 10.1016/j.mcn.2018.12.001 10.1001/jamaneurol.2018.0894 10.1155/2020/2825037 10.3389/fnins.2019.00509 10.2967/jnumed.116.184309 10.1016/j.dadm.2017.05.005 10.2967/jnumed.119.239418 10.1007/s00259-018-4030-3 10.1038/nn.4492 10.3233/JAD-170608 10.1259/bjr.20160156 10.7326/0003-4819-155-8-201110180-00009 10.1007/s00415-019-09441-7 10.1016/j.jns.2019.116645 10.1007/s00259-017-3750-0 10.2174/156720509788929264 10.1016/j.nicl.2018.09.012 10.1016/j.media.2018.02.002 10.1007/s00259-018-4024-1 10.1192/bjp.2020.234 10.1590/S1980-57642009DN20400004 10.3389/fnagi.2020.00238 10.3389/fnhum.2017.00033 10.1007/s00259-019-04400-w 10.1016/j.jalz.2018.02.018 10.1007/s00259-020-05118-w 10.1016/j.neurobiolaging.2016.03.033 10.1007/BF02988444 10.1002/acn3.782 10.1007/s12149-020-01464-9 10.1186/s12883-020-01728-x 10.1016/j.neurobiolaging.2016.04.026 10.1016/j.neurobiolaging.2016.07.012 10.1007/s00259-022-06069-0 10.1002/mds.22499 10.1111/ggi.12794 10.1016/j.pscychresns.2016.12.011 10.2967/jnumed.119.230797 10.1002/hbm.24783 10.1212/WNL.0000000000009323 10.1007/s00259-020-04853-4 10.1097/RLU.0000000000001477 10.1007/s00259-018-4039-7 10.1007/s00259-014-2753-3 10.1136/jnnp.2008.157370 10.1111/ene.14639 10.1002/ana.25893 10.1016/j.jalz.2019.03.016 10.1007/s00259-017-3761-x 10.4103/0028-3886.271245 10.3389/fnagi.2021.764872 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
CorporateAuthor | for the European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia |
CorporateAuthor_xml | – name: for the European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia – name: European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00259-024-06631-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1619-7089 |
EndPage | 1890 |
ExternalDocumentID | 38355740 10_1007_s00259_024_06631_y |
Genre | Systematic Review Journal Article |
GrantInformation_xml | – fundername: F. Hoffmann-La Roche Ltd., Biogen International GmbH, Eisai Europe Limited, Life Molecular Imaging GmbH and OM Pharma Suisse SA |
GroupedDBID | --- -5E -5G -BR -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 40D 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AACDK AAHNG AAIAL AAJBT AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABECU ABFTV ABHQN ABIPD ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACIWK ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACUHS ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBB EBC EBD EBLON EBO EBS EBX EHN EIHBH EIOEI EJD EMB EMK EMOBN EN4 EPL EPT ESBYG ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS Q~Q R89 R9I RNI RNS ROL RPX RRX RSV RZK S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TH9 TSG TSK TT1 TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-f1de2ce2ffa27c392d4e44c00c7a121f4e1b645d7bb8afc5dc03a0591740b3033 |
IEDL.DBID | 7X7 |
ISSN | 1619-7070 1619-7089 |
IngestDate | Fri Jul 11 02:57:12 EDT 2025 Sat Aug 16 19:50:56 EDT 2025 Mon Jul 21 06:08:28 EDT 2025 Thu Apr 24 23:04:40 EDT 2025 Tue Jul 01 04:04:44 EDT 2025 Fri Feb 21 02:42:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | FDG-PET Amyloid-PET Mild cognitive impairment Tau-PET MIBG cardiac scintigraphy DaT-SPECT |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-f1de2ce2ffa27c392d4e44c00c7a121f4e1b645d7bb8afc5dc03a0591740b3033 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Undefined-1 ObjectType-Review-4 content type line 23 |
ORCID | 0000-0003-3090-9648 |
PMID | 38355740 |
PQID | 3062287993 |
PQPubID | 42802 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2927212323 proquest_journals_3062287993 pubmed_primary_38355740 crossref_citationtrail_10_1007_s00259_024_06631_y crossref_primary_10_1007_s00259_024_06631_y springer_journals_10_1007_s00259_024_06631_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 2024-Jun 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European journal of nuclear medicine and molecular imaging |
PublicationTitleAbbrev | Eur J Nucl Med Mol Imaging |
PublicationTitleAlternate | Eur J Nucl Med Mol Imaging |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | JackCRBennettDABlennowKCarrilloMCDunnBHaeberleinSBNIA-AA Research framework: toward a biological definition of Alzheimer’s diseaseAlzheimer’s Dement201814535562 TanRHKrilJJYangYTomNHodgesJRVillemagneVLAssessment of amyloid β in pathologically confirmed Frontotemporal Dementia syndromesAlzheimers Dement (Amst)20179102028653036 NobiliFArbizuJBouwmanFDrzezgaAAgostaFNestorPEANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensusEur J Neurol201825120112171:STN:280:DC%2BB3c%2FgslyrsQ%3D%3D29932266 TondoGCarliGSantangeloRMattoliMVPresottoLFilippiMBiomarker-based stability in limbic-predominant amnestic mild cognitive impairmentEur J Neurol20212841123113310.1111/ene.1463933185922 NedelskaZJosephsKAGraff-RadfordJPrzybelskiSALesnickTGBoeveBF18 F-AV-1451 uptake differs between Dementia with Lewy bodies and posterior cortical atrophyMov Disord201934344352306158046420367 MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D10.1016/j.neurobiolaging.2020.12.00933422890 Cotta RamusinoMPeriniGAltomareDBarbarinoPWeidnerWSalvini PorroGOutcomes of clinical utility in amyloid-PET studies: state of art and future perspectivesEur J Nucl Med Mol Imaging20214821572168335944748175294 FrisoniGBJackCRWinbladBAlzheimer’s disease biomarker development: a call to funding bodiesNeurobiol Aging20175211711828317642 PopescuSGWhittingtonAGunnRNMatthewsPMGlockerBSharpDJNonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer’s diseaseHum Brain Mapp202041154406441810.1002/hbm.25133326438527502835 NicastroNBurkhardPRGaribottoVScan without evidence of dopaminergic deficit (SWEDD) in degenerative Parkinsonism and Dementia with Lewy bodies: a prospective studyJ Neurol Sci2018385172110.1016/j.jns.2017.11.03929406901 MelesSKPaganiMArnaldiDDe CarliFDessiBMorbelliSThe Alzheimer’s disease metabolic brain pattern in mild cognitive impairmentJ Cereb Blood Flow Metab201737364336481:CAS:528:DC%2BC1cXitFKms70%3D289298335718332 GuptaYKimJIKimBCKwonGRClassification and graphical analysis of Alzheimer’s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the APOE genotypeFront Aging Neurosci2020122381:CAS:528:DC%2BB3cXisVSju7fE328487137406801 YeeEPopuriKBegMFAlzheimer’s Disease Neuroimaging InitiativeQuantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia scoreHum Brain Mapp.202041151610.1002/hbm.2478331507022 GuptaVVermaRRanjanRBelhoESSeniarayNDinandVMetabolic imaging patterns in posterior cortical atrophy and Lewy body dementiaNucl Med Commun20194012127512821:CAS:528:DC%2BC1MXisVygt7bN10.1097/MNM.000000000000110231633646 LuDPopuriKDingGWBalachandarRBegMFAlzheimer’s Disease Neuroimaging InitiativeMultiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s diseaseMed Image Anal.201846263410.1016/j.media.2018.02.00229502031 SonniIRatibOBoccardiMPiccoAHerholzKNobiliFClinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the context of a structured 5-phase development frameworkNeurobiol Aging2017522282421:CAS:528:DC%2BC2sXks1Snt70%3D28317651 TengLLiYZhaoYHuTZhangZYaoZPredicting MCI progression with FDG-PET and cognitive scores: a longitudinal studyBMC Neurol20202011481:CAS:528:DC%2BB3cXnslGlsLg%3D10.1186/s12883-020-01728-x323169127171825 RobertsGDonaghyPCLloydJDurcanRPetridesGCollobySJAccuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodiesBr J Psychiatry2021218527628210.1192/bjp.2020.23433355065 FordJNSweeneyEMSkafidaMGlynnSAmoashiyMLangeDJHeuristic scoring method utilizing FDG-PET statistical parametric mapping in the evaluation of suspected Alzheimer disease and frontotemporal lobar degenerationAm J Nucl Med Mol Imaging20211143133261:CAS:528:DC%2BB3MXivVaku7fP345132858414399 CaminitiSPSalaAIaccarinoLBerettaLPilottoAGianolliLBrain glucose metabolism in Lewy body dementia: implications for diagnostic criteriaAlzheimers Res Ther20191120307972406387558 WoltersEEDodichABoccardiMCorreJDrzezgaAHanssonOClinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development frameworkEur J Nucl Med Mol Imaging202148209721091:CAS:528:DC%2BB3MXmsVChtbs%3D335475568175307 HuangYXuJZhouYTongTZhuangXAlzheimer’s Disease Neuroimaging Initiative (ADNI)Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural networkFront Neurosci.20191350910.3389/fnins.2019.00509312139676555226 ArbizuJFestariCAltomareDWalkerZBouwmanFRivoltaJClinical utility of FDG-PET for the differential diagnosis in MCIEur J Nucl Med Mol Imaging201845149715081:CAS:528:DC%2BC1cXosFGlu7w%3D29704037 RabinoviciGDRosenHJAlkalayAKornakJFurstAJAgarwalNAmyloid vs FDG-PET in the differential diagnosis of AD and FTLDNeurology201177203420421:CAS:528:DC%2BC3MXhsFOhur%2FI221315413236517 RogalskiEJMesulamMMClinical trajectories and biological features of Primary Progressive Aphasia (PPA)Curr Alzheimer Res200963313361:CAS:528:DC%2BD1MXovV2rsb8%3D196892312863134 EtminaniKSolimanADavidssonAChangJRMartínez-SanchisBByttnerSA 3D deep learning model to predict the diagnosis of Dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PETEur J Nucl Med Mol Imaging20224925635841:CAS:528:DC%2BB3MXhvF2qtr7F10.1007/s00259-021-05483-034328531 ShimizuSKanetakaHHiraoKFukasawaRNamiokaNHatanakaHNeuroimaging for diagnosing Dementia with Lewy bodies: what is the best neuroimaging technique in discriminating Dementia with Lewy bodies from Alzheimer’s disease?Geriatr Gerontol Int201717581982410.1111/ggi.1279427138074 NicastroNGaribottoVAllaliGAssalFBurkhardPRAdded value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of Dementia with Lewy bodiesClin Nucl Med201742e96e10227941373 CecchinDBarthelHPoggialiDCagninATiepoltSZucchettaPA new integrated dual time-point amyloid PET/MRI data analysis methodEur J Nucl Med Mol Imaging201744206020721:CAS:528:DC%2BC2sXhtFKiu7rO28674847 PanXPhanTLAdelMFossatiCGaidonTWojakJMulti-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imagingIEEE Trans Med Imaging2021401819210.1109/TMI.2020.302259132894711 KantarciKLoweVJChenQPrzybelskiSALesnickTGSchwarzCGβ-amyloid PET and neuropathology in Dementia with Lewy bodiesNeurology202094e282e2911:CAS:528:DC%2BB3cXjvVGnur0%3D318627837108811 BlumDLiepelt-ScarfoneIBergDGasserTla FougèreCReimoldMAlzheimer’s Disease Neuroimaging InitiativeControls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PETEur J Nucl Med Mol Imaging.201946112370237910.1007/s00259-019-04400-w31338550 KangSWJeonSLeeYGParkMBaikKJungJHImplication of metabolic and dopamine transporter PET in Dementia with Lewy bodiesSci Rep2021111143941:CAS:528:DC%2BB3MXhs1Cmur3F10.1038/s41598-021-93442-y342573498277897 BoccardiMFestariCAltomareDGandolfoFOriniSNobiliFAssessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementiaEur J Nucl Med Mol Imaging201845147014861:CAS:528:DC%2BC1cXovVWnu7k%3D29713763 InuiYItoKKatoTSEAD-J Study GroupLonger-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter studyJ Alzheimers Dis.20176038778871:CAS:528:DC%2BC2sXhs1WrsbrE10.3233/JAD-170395289221575676852 BeyerLBrendelMScheiweinFSauerbeckJHosakawaCAlbertsIImproved risk stratification for progression from mild cognitive impairment to Alzheimer’s disease with a multi-analytical evaluation of amyloid-β positron emission tomographyJ Alzheimers Dis2020741011121:CAS:528:DC%2BB3cXks1GhtbY%3D31985461 Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Joint Assessment of quantitative 18F-Florbetapir and 18F-FDG regional uptake using baseline data from the ADNIJ Alzheimers Dis.20186213994081:CAS:528:DC%2BC1cXitl2mu7g%3D10.3233/JAD-17083329439345 Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 databaseAlzheimers Res Ther.201791321:CAS:528:DC%2BC1cXmsl2ktrc%3D10.1186/s13195-017-0260-z284419675405503 GjerumLFrederiksenKSHenriksenOMLawIAnderbergLAndersenBBA visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate Dementia with Lewy bodies and Alzheimer’s diseaseJ Neurol Sci20204101166451:CAS:528:DC%2BB3cXjvFKjtw%3D%3D10.1016/j.jns.2019.11664531911283 LoweVJLundtESAlbertsonSMPrzybelskiSASenjemMLParisiJENeuroimaging correlates with neuropathologic schemes in neurodegenerative diseaseAlzheimers Dement20191592793931175025 MaltaisDDJordanLGMinHKMiyagawaTPrzybelskiSALesnickTGConfirmation of 123I-FP-CIT SPECT quantification methods in Dementia with Lewy bodies and other neurodegenerative disordersJ Nucl Med202061162816351:CAS:528:DC%2BB3cXisVKlsLnL321983109364894 ChoiHJinKHAlzheimer’s Disease Neuroimaging InitiativePredicting cognitive decline with deep learning of brain metabolism and amyloid imagingBehav Brain Res.20183441031091:CAS:528:DC%2BC1cXjsF2nsrw%3D10.1016/j.bbr.2018.02.01729454006 TaraganoFEAllegriRFLyketsosCMild behavioral impairment: a prodromal stage of dementiaDement Neuropsychol20082256260292135815619076 InagawaYKanetakaHTsugawaASakuraiSSerisawaSShimizuSEfficacy of olfactory and pareidolia tests compared with M Schöll (6631_CR9) 2019; 97 F Nobili (6631_CR4) 2018; 25 M Wang (6631_CR47) 2020; 2020 M Pagani (6631_CR25) 2017; 58 K Popuri (6631_CR27) 2018; 18 VJ Lowe (6631_CR33) 2019; 15 D Blum (6631_CR40) 2019; 46 D Altomare (6631_CR42) 2019; 266 V Garibotto (6631_CR12) 2017; 52 F Sakamoto (6631_CR80) 2017; 90 DD Maltais (6631_CR68) 2020; 61 Y Gupta (6631_CR32) 2020; 12 X Pan (6631_CR46) 2021; 40 SG Popescu (6631_CR66) 2020; 41 G Kägi (6631_CR10) 2010; 81 E Yee (6631_CR39) 2020; 41 K Etminani (6631_CR51) 2022; 49 P Zhou (6631_CR48) 2021; 13 I Sonni (6631_CR14) 2017; 52 Z Nedelska (6631_CR78) 2019; 34 J Arbizu (6631_CR83) 2018; 45 O Rascol (6631_CR11) 2009; 24 K Liu (6631_CR34) 2017; 11 C Boccalini (6631_CR86) 2022; 64 K Chiotis (6631_CR13) 2017; 52 IG McKeith (6631_CR18) 2020; 94 G Blazhenets (6631_CR64) 2020; 61 SP Caminiti (6631_CR29) 2019; 11 A Nazem (6631_CR55) 2018; 10 SK Meles (6631_CR28) 2017; 37 FE Taragano (6631_CR19) 2008; 2 SM Landau (6631_CR84) 2014; 41 GM McKhann (6631_CR7) 2011; 7 M Boccardi (6631_CR23) 2018; 45 ER Zimmer (6631_CR3) 2017; 20 EJ Rogalski (6631_CR20) 2009; 6 T Miyagawa (6631_CR63) 2021; 99 HS Yoo (6631_CR67) 2018; 45 V Gupta (6631_CR52) 2019; 40 F Nobili (6631_CR81) 2018; 45 N Nicastro (6631_CR77) 2018; 385 L Gjerum (6631_CR53) 2020; 410 DA Wolk (6631_CR59) 2018; 75 D Cecchin (6631_CR85) 2017; 44 WA Krudop (6631_CR56) 2017; 60 MS Albert (6631_CR6) 2011; 7 AJ Thomas (6631_CR72) 2019; 49 G Tondo (6631_CR49) 2021; 28 S Shimizu (6631_CR73) 2017; 17 EE Wolters (6631_CR15) 2021; 48 R Ossenkoppele (6631_CR88) 2021; 78 M Pagani (6631_CR26) 2017; 44 N Nicastro (6631_CR69) 2017; 42 F Ben Bouallègue (6631_CR44) 2018; 62 Y Manabe (6631_CR79) 2017; 261 D Lu (6631_CR41) 2018; 46 CR Jack (6631_CR8) 2018; 14 SW Kang (6631_CR50) 2021; 11 L Beyer (6631_CR58) 2020; 74 MJ Page (6631_CR21) 2021; 372 A Katako (6631_CR35) 2018; 8 T Miyagawa (6631_CR74) 2021; 99 F Ben Bouallègue (6631_CR65) 2017; 9 GD Rabinovici (6631_CR82) 2011; 77 G Roberts (6631_CR75) 2021; 218 H Choi (6631_CR43) 2018; 344 Y Inui (6631_CR45) 2017; 60 M Cotta Ramusino (6631_CR17) 2021; 48 JJ Lloyd (6631_CR76) 2018; 20 F Lanfranchi (6631_CR87) 2023; 50 T Iizuka (6631_CR54) 2020; 267 KA Johnson (6631_CR5) 2013; 54 A Ghirelli (6631_CR61) 2020; 88 Y Huang (6631_CR38) 2019; 13 F Sakamoto (6631_CR71) 2020; 34 PF Whiting (6631_CR24) 2011; 155 RH Tan (6631_CR60) 2017; 9 Y Inagawa (6631_CR70) 2020; 11 6631_CR1 L Teng (6631_CR37) 2020; 20 R Santangelo (6631_CR31) 2020; 47 K Kantarci (6631_CR62) 2020; 94 M Tripathi (6631_CR30) 2019; 67 BJ Shea (6631_CR22) 2017; 358 JN Ford (6631_CR57) 2021; 11 K Herholz (6631_CR2) 2003; 17 GB Frisoni (6631_CR16) 2017; 52 L Iaccarino (6631_CR36) 2019; 6 |
References_xml | – reference: PaganiMNobiliFMorbelliSArnaldiDGiulianiAÖbergJEarly identification of MCI converting to AD: a FDG PET studyEur J Nucl Med Mol Imaging201744204220521:CAS:528:DC%2BC2sXhtVyrsLrE28664464 – reference: YeeEPopuriKBegMFAlzheimer’s Disease Neuroimaging InitiativeQuantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia scoreHum Brain Mapp.202041151610.1002/hbm.2478331507022 – reference: JackCRBennettDABlennowKCarrilloMCDunnBHaeberleinSBNIA-AA Research framework: toward a biological definition of Alzheimer’s diseaseAlzheimer’s Dement201814535562 – reference: MelesSKPaganiMArnaldiDDe CarliFDessiBMorbelliSThe Alzheimer’s disease metabolic brain pattern in mild cognitive impairmentJ Cereb Blood Flow Metab201737364336481:CAS:528:DC%2BC1cXitFKms70%3D289298335718332 – reference: ZhouPZengRYuLFengYChenCLiFDeep-learning radiomics for discrimination conversion of Alzheimer’s disease in patients with mild cognitive impairment: a study based on 18F-FDG PET imagingFront Aging Neurosci2021137648721:CAS:528:DC%2BB38Xot1Oktro%3D10.3389/fnagi.2021.764872347648648576572 – reference: PopuriKBalachandarRAlpertKLuDBhallaMMackenzieIRDevelopment and validation of a novel dementia of Alzheimer’s type (DAT) score based on metabolism FDG-PET imagingNeuroimage Clin201818802813298762665988459 – reference: SantangeloRMasseriniFAgostaFSalaACaminitiSPCecchettiGCSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to ADEur J Nucl Med Mol Imaging202047315231641:CAS:528:DC%2BB3cXpsFOlt7s%3D32415550 – reference: ZimmerERParentMJSouzaDGLeuzyALecruxCKimH[18F]FDG PET signal is driven by astroglial glutamate transportNat Neurosci2017203933951:CAS:528:DC%2BC2sXhvVeisbs%3D281352415378483 – reference: CecchinDBarthelHPoggialiDCagninATiepoltSZucchettaPA new integrated dual time-point amyloid PET/MRI data analysis methodEur J Nucl Med Mol Imaging201744206020721:CAS:528:DC%2BC2sXhtFKiu7rO28674847 – reference: WoltersEEDodichABoccardiMCorreJDrzezgaAHanssonOClinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development frameworkEur J Nucl Med Mol Imaging202148209721091:CAS:528:DC%2BB3MXmsVChtbs%3D335475568175307 – reference: LoweVJLundtESAlbertsonSMPrzybelskiSASenjemMLParisiJENeuroimaging correlates with neuropathologic schemes in neurodegenerative diseaseAlzheimers Dement20191592793931175025 – reference: ChiotisKSaint-AubertLBoccardiMGietlAPiccoAVarroneAClinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development frameworkNeurobiol Aging2017522142271:CAS:528:DC%2BC2sXks1Snt7o%3D28317650 – reference: GhirelliATosakulwongNWeigandSDClarkHMAliFBothaHSensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degenerationAnn Neurol202088100910221:CAS:528:DC%2BB3cXitFehsLfI328693627861121 – reference: LanfranchiFArnaldiDMiceliAMattioliPD'AmicoFRaffaSDifferent z-score cut-offs for striatal binding ratio (SBR) of DaT SPECT are needed to support the diagnosis of Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB)Eur J Nucl Med Mol Imaging2023501090110236471041 – reference: NobiliFArbizuJBouwmanFDrzezgaAAgostaFNestorPEANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensusEur J Neurol201825120112171:STN:280:DC%2BB3c%2FgslyrsQ%3D%3D29932266 – reference: SakamotoFShiraishiSTsudaNHashimotoMTomiguchiSIkedaMDiagnosis of Dementia with Lewy bodies: can 123I-IMP and 123I-MIBG scintigraphy yield new core features?Br J Radiol20179010702016015610.1259/bjr.20160156278970645685106 – reference: BoccardiMFestariCAltomareDGandolfoFOriniSNobiliFAssessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementiaEur J Nucl Med Mol Imaging201845147014861:CAS:528:DC%2BC1cXovVWnu7k%3D29713763 – reference: RobertsGDonaghyPCLloydJDurcanRPetridesGCollobySJAccuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodiesBr J Psychiatry2021218527628210.1192/bjp.2020.23433355065 – reference: NazemATangCCSpetsierisPDreselCGordonMLDiehl-SchmidJA multivariate metabolic imaging marker for behavioral variant Frontotemporal DementiaAlzheimers Dement (Amst)20181058359410.1016/j.dadm.2018.07.00930417069 – reference: JohnsonKAMinoshimaSBohnenNIDonohoeKJFosterNLHerscovitchPAppropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s AssociationAlzheimer’s Dement2013544764901:CAS:528:DC%2BC3sXltV2ks7g%3D – reference: WolkDASadowskyCSafirsteinBRinneJODuaraRPerryRUse of flutemetamol F 18-labeled positron emission tomography and other biomarkers to assess risk of clinical progression in patients with amnestic mild cognitive impairmentJAMA Neurol20187511141123297999846143120 – reference: ArbizuJFestariCAltomareDWalkerZBouwmanFRivoltaJClinical utility of FDG-PET for the differential diagnosis in MCIEur J Nucl Med Mol Imaging201845149715081:CAS:528:DC%2BC1cXosFGlu7w%3D29704037 – reference: FrisoniGBJackCRWinbladBAlzheimer’s disease biomarker development: a call to funding bodiesNeurobiol Aging20175211711828317642 – reference: PaganiMGiulianiAÖbergJDe CarliFMorbelliSGirtlerNProgressive disintegration of brain networking from normal aging to Alzheimer disease: analysis of independent components of 18F-FDG PET dataJ Nucl Med2017581132113928280223 – reference: NedelskaZJosephsKAGraff-RadfordJPrzybelskiSALesnickTGBoeveBF18 F-AV-1451 uptake differs between Dementia with Lewy bodies and posterior cortical atrophyMov Disord201934344352306158046420367 – reference: BlumDLiepelt-ScarfoneIBergDGasserTla FougèreCReimoldMAlzheimer’s Disease Neuroimaging InitiativeControls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PETEur J Nucl Med Mol Imaging.201946112370237910.1007/s00259-019-04400-w31338550 – reference: HuangYXuJZhouYTongTZhuangXAlzheimer’s Disease Neuroimaging Initiative (ADNI)Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural networkFront Neurosci.20191350910.3389/fnins.2019.00509312139676555226 – reference: NicastroNBurkhardPRGaribottoVScan without evidence of dopaminergic deficit (SWEDD) in degenerative Parkinsonism and Dementia with Lewy bodies: a prospective studyJ Neurol Sci2018385172110.1016/j.jns.2017.11.03929406901 – reference: InuiYItoKKatoTSEAD-J Study GroupLonger-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter studyJ Alzheimers Dis.20176038778871:CAS:528:DC%2BC2sXhs1WrsbrE10.3233/JAD-170395289221575676852 – reference: TondoGCarliGSantangeloRMattoliMVPresottoLFilippiMBiomarker-based stability in limbic-predominant amnestic mild cognitive impairmentEur J Neurol20212841123113310.1111/ene.1463933185922 – reference: WangMYanZXiaoSYZuoCJiangJA novel metabolic connectome method to predict progression to mild cognitive impairmentBehav Neurol20202020282503710.1155/2020/2825037329086137450311 – reference: NicastroNGaribottoVAllaliGAssalFBurkhardPRAdded value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of Dementia with Lewy bodiesClin Nucl Med201742e96e10227941373 – reference: CaminitiSPSalaAIaccarinoLBerettaLPilottoAGianolliLBrain glucose metabolism in Lewy body dementia: implications for diagnostic criteriaAlzheimers Res Ther20191120307972406387558 – reference: KrudopWADolsAKerssensCJEikelenboomPPrinsNDMöllerCThe pitfall of behavioral variant Frontotemporal Dementia mimics despite multidisciplinary application of the FTDC criteriaJ Alzheimers Dis201760395997510.3233/JAD-17060828984605 – reference: YooHSChungSJKimSJOhJSKimJSYeBSThe role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and Frontotemporal Dementia in the early stageEur J Nucl Med Mol Imaging2018451585159529728749 – reference: RascolOScheloskyL123 I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disordersMov Disord200924S732S74119877202 – reference: TengLLiYZhaoYHuTZhangZYaoZPredicting MCI progression with FDG-PET and cognitive scores: a longitudinal studyBMC Neurol20202011481:CAS:528:DC%2BB3cXnslGlsLg%3D10.1186/s12883-020-01728-x323169127171825 – reference: McKeithIGFermanTJThomasAJBlancFBoeveBFFujishiroHResearch criteria for the diagnosis of prodromal Dementia with Lewy bodiesNeurology202094743755322419557274845 – reference: Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Joint Assessment of quantitative 18F-Florbetapir and 18F-FDG regional uptake using baseline data from the ADNIJ Alzheimers Dis.20186213994081:CAS:528:DC%2BC1cXitl2mu7g%3D10.3233/JAD-17083329439345 – reference: ThomasAJDonaghyPRobertsGCollobySJBarnettNAPetridesGDiagnostic accuracy of dopaminergic imaging in prodromal Dementia with Lewy bodiesPsychol Med201949339640210.1017/S003329171800099529692275 – reference: SchöllMMaassAMattssonNAshtonNJBlennowKZetterbergHBiomarkers for tau pathologyMol Cell Neurosci2019971833305296016584358 – reference: SonniIRatibOBoccardiMPiccoAHerholzKNobiliFClinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the context of a structured 5-phase development frameworkNeurobiol Aging2017522282421:CAS:528:DC%2BC2sXks1Snt70%3D28317651 – reference: NobiliFFestariCAltomareDAgostaFOriniSVan LaereKAutomated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disordersEur J Nucl Med Mol Imaging201845155715661:CAS:528:DC%2BC1cXovVWksLg%3D29721650 – reference: PanXPhanTLAdelMFossatiCGaidonTWojakJMulti-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imagingIEEE Trans Med Imaging2021401819210.1109/TMI.2020.302259132894711 – reference: IizukaTKameyamaMSpatial metabolic profiles to discriminate Dementia with Lewy bodies from Alzheimer diseaseJ Neurol202026771960196910.1007/s00415-020-09790-832170446 – reference: KägiGBhatiaKPTolosaEThe role of DAT-SPECT in movement disordersJ Neurol Neurosurg Psychiatry20108151220019219 – reference: Cotta RamusinoMPeriniGAltomareDBarbarinoPWeidnerWSalvini PorroGOutcomes of clinical utility in amyloid-PET studies: state of art and future perspectivesEur J Nucl Med Mol Imaging20214821572168335944748175294 – reference: PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA 2020 statement: an updated guideline for reporting systematic reviewsBMJ2021372337820578005924 – reference: WhitingPFRutjesAWSWestwoodMEMallettSDeeksJJReitsmaJBQUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studiesAnn Intern Med201115552953622007046 – reference: LloydJJPetridesGDonaghyPCCollobySJAttemsJO'BrienJTA new visual rating scale for ioflupane imaging in Lewy body diseaseNeuroimage Clin20182082382910.1016/j.nicl.2018.09.012302689916169248 – reference: Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 databaseAlzheimers Res Ther.201791321:CAS:528:DC%2BC1cXmsl2ktrc%3D10.1186/s13195-017-0260-z284419675405503 – reference: AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement20117270279 – reference: PopescuSGWhittingtonAGunnRNMatthewsPMGlockerBSharpDJNonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer’s diseaseHum Brain Mapp202041154406441810.1002/hbm.25133326438527502835 – reference: RogalskiEJMesulamMMClinical trajectories and biological features of Primary Progressive Aphasia (PPA)Curr Alzheimer Res200963313361:CAS:528:DC%2BD1MXovV2rsb8%3D196892312863134 – reference: InagawaYKanetakaHTsugawaASakuraiSSerisawaSShimizuSEfficacy of olfactory and pareidolia tests compared with that of indicative biomarkers in diagnosis of Dementia with Lewy bodiesFront Neurol202011540291330419917517047 – reference: MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D10.1016/j.neurobiolaging.2020.12.00933422890 – reference: OssenkoppeleRSmithRMattsson-CarlgrenNGrootCLeuzyAStrandbergOAccuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imagingJAMA Neurol202178961971341809568240013 – reference: ChoiHJinKHAlzheimer’s Disease Neuroimaging InitiativePredicting cognitive decline with deep learning of brain metabolism and amyloid imagingBehav Brain Res.20183441031091:CAS:528:DC%2BC1cXjsF2nsrw%3D10.1016/j.bbr.2018.02.01729454006 – reference: HerholzKPET studies in dementiaAnn Nucl Med200317798912790355 – reference: TripathiMTripathiMParidaGKKumarRDwivediSNehraABiomarker-based prediction of progression to dementia: F-18 FDG-PET in amnestic MCINeurol India2019671310131731744965 – reference: KantarciKLoweVJChenQPrzybelskiSALesnickTGSchwarzCGβ-amyloid PET and neuropathology in Dementia with Lewy bodiesNeurology202094e282e2911:CAS:528:DC%2BB3cXjvVGnur0%3D318627837108811 – reference: GaribottoVHerholzKBoccardiMPiccoAVarroneANordbergAClinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development frameworkNeurobiol Aging2017521831951:CAS:528:DC%2BC2sXks1Snt7k%3D28317648 – reference: LiuKChenKYaoLGuoXPrediction of mild cognitive impairment conversion using a combination of independent component analysis and the Cox modelFront Hum Neurosci2017113310.3389/fnhum.2017.00033282200655292818 – reference: GuptaVVermaRRanjanRBelhoESSeniarayNDinandVMetabolic imaging patterns in posterior cortical atrophy and Lewy body dementiaNucl Med Commun20194012127512821:CAS:528:DC%2BC1MXisVygt7bN10.1097/MNM.000000000000110231633646 – reference: GjerumLFrederiksenKSHenriksenOMLawIAnderbergLAndersenBBA visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate Dementia with Lewy bodies and Alzheimer’s diseaseJ Neurol Sci20204101166451:CAS:528:DC%2BB3cXjvFKjtw%3D%3D10.1016/j.jns.2019.11664531911283 – reference: TanRHKrilJJYangYTomNHodgesJRVillemagneVLAssessment of amyloid β in pathologically confirmed Frontotemporal Dementia syndromesAlzheimers Dement (Amst)20179102028653036 – reference: SheaBJReevesBCWellsGThukuMHamelCMoranJAMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or bothBMJ2017358j400810.1136/bmj.j4008289357015833365 – reference: LuDPopuriKDingGWBalachandarRBegMFAlzheimer’s Disease Neuroimaging InitiativeMultiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s diseaseMed Image Anal.201846263410.1016/j.media.2018.02.00229502031 – reference: KangSWJeonSLeeYGParkMBaikKJungJHImplication of metabolic and dopamine transporter PET in Dementia with Lewy bodiesSci Rep2021111143941:CAS:528:DC%2BB3MXhs1Cmur3F10.1038/s41598-021-93442-y342573498277897 – reference: EtminaniKSolimanADavidssonAChangJRMartínez-SanchisBByttnerSA 3D deep learning model to predict the diagnosis of Dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PETEur J Nucl Med Mol Imaging20224925635841:CAS:528:DC%2BB3MXhvF2qtr7F10.1007/s00259-021-05483-034328531 – reference: ShimizuSKanetakaHHiraoKFukasawaRNamiokaNHatanakaHNeuroimaging for diagnosing Dementia with Lewy bodies: what is the best neuroimaging technique in discriminating Dementia with Lewy bodies from Alzheimer’s disease?Geriatr Gerontol Int201717581982410.1111/ggi.1279427138074 – reference: RabinoviciGDRosenHJAlkalayAKornakJFurstAJAgarwalNAmyloid vs FDG-PET in the differential diagnosis of AD and FTLDNeurology201177203420421:CAS:528:DC%2BC3MXhsFOhur%2FI221315413236517 – reference: FordJNSweeneyEMSkafidaMGlynnSAmoashiyMLangeDJHeuristic scoring method utilizing FDG-PET statistical parametric mapping in the evaluation of suspected Alzheimer disease and frontotemporal lobar degenerationAm J Nucl Med Mol Imaging20211143133261:CAS:528:DC%2BB3MXivVaku7fP345132858414399 – reference: GuptaYKimJIKimBCKwonGRClassification and graphical analysis of Alzheimer’s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the APOE genotypeFront Aging Neurosci2020122381:CAS:528:DC%2BB3cXisVSju7fE328487137406801 – reference: BoccaliniCPerettiDERibaldiFSchefflerMStampacchiaSTomczykSEarly-phase 18F-florbetapir and 18F-flutemetamol images as proxies of brain metabolism in a memory clinic settingJ Nucl Med20226426627335863896 – reference: Frisoni GB, Festari C, Massa F, Cotta Ramusino M, Orini S, Aarsland D, et al. European inter-societal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Accepted for publication in Lancet Neurol. – reference: SakamotoFShiraishiSOgasawaraKTsudaNNakagawaMTomiguchiSA diagnostic strategy for Lewy body disease using DAT-SPECT, MIBG and combined indexAnn Nucl Med2020344154231:CAS:528:DC%2BB3cXnsVWiu7o%3D32301068 – reference: LandauSMThomasBAThurfjellLSchmidtMMargolinRMintunMAmyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracersEur J Nucl Med Mol Imaging201441139814071:CAS:528:DC%2BC2cXkslSqu7o%3D246475774055504 – reference: AltomareDFerrariCCaroliAGalluzziSPrestiaAvan der FlierWMPrognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onsetJ Neurol201926610253525451:CAS:528:DC%2BC1MXhtlegsrbM10.1007/s00415-019-09441-731267207 – reference: BeyerLBrendelMScheiweinFSauerbeckJHosakawaCAlbertsIImproved risk stratification for progression from mild cognitive impairment to Alzheimer’s disease with a multi-analytical evaluation of amyloid-β positron emission tomographyJ Alzheimers Dis2020741011121:CAS:528:DC%2BB3cXks1GhtbY%3D31985461 – reference: MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D33422890 – reference: TaraganoFEAllegriRFLyketsosCMild behavioral impairment: a prodromal stage of dementiaDement Neuropsychol20082256260292135815619076 – reference: IaccarinoLSalaAPeraniDAlzheimer’s Disease Neuroimaging InitiativePredicting long-term clinical stability in amyloid-positive subjects by FDG-PETAnn Clin Transl Neurol.201966111311201:CAS:528:DC%2BC1MXhtFGjs7%2FE10.1002/acn3.782312111766562030 – reference: BlazhenetsGMaYSörensenASchillerFRückerGEidelbergDPredictive value of 18F-Florbetapir and 18F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementiaJ Nucl Med20206145976031:CAS:528:DC%2BB3cXhvVOisL%2FK10.2967/jnumed.119.230797316282157198373 – reference: ManabeYInuiYToyamaHKosakaK123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of Dementia with Lewy bodiesPsychiatry Res Neuroimaging2017261757910.1016/j.pscychresns.2016.12.01128152401 – reference: KatakoASheltonPGoertzenALLevinDBybelBAljuaidMMachine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementiaSci Rep201881132361:CAS:528:DC%2BC1MXnt1Khsw%3D%3D10.1038/s41598-018-31653-6301858066125295 – reference: MaltaisDDJordanLGMinHKMiyagawaTPrzybelskiSALesnickTGConfirmation of 123I-FP-CIT SPECT quantification methods in Dementia with Lewy bodies and other neurodegenerative disordersJ Nucl Med202061162816351:CAS:528:DC%2BB3cXisVKlsLnL321983109364894 – reference: McKhannGMKnopmanDSChertkowHHymanBTJackCRJrKawasCHThe diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement20117263269 – volume: 358 start-page: j4008 year: 2017 ident: 6631_CR22 publication-title: BMJ doi: 10.1136/bmj.j4008 – volume: 9 start-page: 32 issue: 1 year: 2017 ident: 6631_CR65 publication-title: Alzheimers Res Ther. doi: 10.1186/s13195-017-0260-z – volume: 45 start-page: 1585 year: 2018 ident: 6631_CR67 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-4019-y – volume: 48 start-page: 2157 year: 2021 ident: 6631_CR17 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05187-x – volume: 7 start-page: 270 year: 2011 ident: 6631_CR6 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2011.03.008 – volume: 344 start-page: 103 year: 2018 ident: 6631_CR43 publication-title: Behav Brain Res. doi: 10.1016/j.bbr.2018.02.017 – volume: 11 start-page: 540291 year: 2020 ident: 6631_CR70 publication-title: Front Neurol doi: 10.3389/fneur.2020.540291 – volume: 18 start-page: 802 year: 2018 ident: 6631_CR27 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.03.007 – volume: 49 start-page: 396 issue: 3 year: 2019 ident: 6631_CR72 publication-title: Psychol Med doi: 10.1017/S0033291718000995 – volume: 37 start-page: 3643 year: 2017 ident: 6631_CR28 publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X17732508 – volume: 40 start-page: 81 issue: 1 year: 2021 ident: 6631_CR46 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3022591 – volume: 62 start-page: 399 issue: 1 year: 2018 ident: 6631_CR44 publication-title: J Alzheimers Dis. doi: 10.3233/JAD-170833 – volume: 77 start-page: 2034 year: 2011 ident: 6631_CR82 publication-title: Neurology doi: 10.1212/WNL.0b013e31823b9c5e – volume: 54 start-page: 476 year: 2013 ident: 6631_CR5 publication-title: Alzheimer’s Dement – volume: 64 start-page: 266 year: 2022 ident: 6631_CR86 publication-title: J Nucl Med doi: 10.2967/jnumed.122.264256 – volume: 25 start-page: 1201 year: 2018 ident: 6631_CR4 publication-title: Eur J Neurol doi: 10.1111/ene.13728 – volume: 7 start-page: 263 year: 2011 ident: 6631_CR7 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 52 start-page: 117 year: 2017 ident: 6631_CR16 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.02.035 – volume: 11 start-page: 14394 issue: 1 year: 2021 ident: 6631_CR50 publication-title: Sci Rep doi: 10.1038/s41598-021-93442-y – volume: 60 start-page: 877 issue: 3 year: 2017 ident: 6631_CR45 publication-title: J Alzheimers Dis. doi: 10.3233/JAD-170395 – volume: 40 start-page: 1275 issue: 12 year: 2019 ident: 6631_CR52 publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000001102 – volume: 10 start-page: 583 year: 2018 ident: 6631_CR55 publication-title: Alzheimers Dement (Amst) doi: 10.1016/j.dadm.2018.07.009 – volume: 34 start-page: 344 year: 2019 ident: 6631_CR78 publication-title: Mov Disord doi: 10.1002/mds.27603 – volume: 94 start-page: e282 year: 2020 ident: 6631_CR62 publication-title: Neurology doi: 10.1212/WNL.0000000000008818 – volume: 41 start-page: 4406 issue: 15 year: 2020 ident: 6631_CR66 publication-title: Hum Brain Mapp doi: 10.1002/hbm.25133 – volume: 267 start-page: 1960 issue: 7 year: 2020 ident: 6631_CR54 publication-title: J Neurol doi: 10.1007/s00415-020-09790-8 – volume: 99 start-page: 11 year: 2021 ident: 6631_CR74 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.12.009 – volume: 372 year: 2021 ident: 6631_CR21 publication-title: BMJ – volume: 99 start-page: 11 year: 2021 ident: 6631_CR63 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.12.009 – volume: 385 start-page: 17 year: 2018 ident: 6631_CR77 publication-title: J Neurol Sci doi: 10.1016/j.jns.2017.11.039 – volume: 78 start-page: 961 year: 2021 ident: 6631_CR88 publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2021.1858 – volume: 74 start-page: 101 year: 2020 ident: 6631_CR58 publication-title: J Alzheimers Dis doi: 10.3233/JAD-190818 – volume: 11 start-page: 20 year: 2019 ident: 6631_CR29 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-019-0473-4 – volume: 8 start-page: 13236 issue: 1 year: 2018 ident: 6631_CR35 publication-title: Sci Rep doi: 10.1038/s41598-018-31653-6 – volume: 49 start-page: 563 issue: 2 year: 2022 ident: 6631_CR51 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05483-0 – volume: 97 start-page: 18 year: 2019 ident: 6631_CR9 publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2018.12.001 – volume: 75 start-page: 1114 year: 2018 ident: 6631_CR59 publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2018.0894 – ident: 6631_CR1 – volume: 2020 start-page: 2825037 year: 2020 ident: 6631_CR47 publication-title: Behav Neurol doi: 10.1155/2020/2825037 – volume: 13 start-page: 509 year: 2019 ident: 6631_CR38 publication-title: Front Neurosci. doi: 10.3389/fnins.2019.00509 – volume: 58 start-page: 1132 year: 2017 ident: 6631_CR25 publication-title: J Nucl Med doi: 10.2967/jnumed.116.184309 – volume: 9 start-page: 10 year: 2017 ident: 6631_CR60 publication-title: Alzheimers Dement (Amst) doi: 10.1016/j.dadm.2017.05.005 – volume: 61 start-page: 1628 year: 2020 ident: 6631_CR68 publication-title: J Nucl Med doi: 10.2967/jnumed.119.239418 – volume: 45 start-page: 1557 year: 2018 ident: 6631_CR81 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-4030-3 – volume: 20 start-page: 393 year: 2017 ident: 6631_CR3 publication-title: Nat Neurosci doi: 10.1038/nn.4492 – volume: 60 start-page: 959 issue: 3 year: 2017 ident: 6631_CR56 publication-title: J Alzheimers Dis doi: 10.3233/JAD-170608 – volume: 90 start-page: 20160156 issue: 1070 year: 2017 ident: 6631_CR80 publication-title: Br J Radiol doi: 10.1259/bjr.20160156 – volume: 155 start-page: 529 year: 2011 ident: 6631_CR24 publication-title: Ann Intern Med doi: 10.7326/0003-4819-155-8-201110180-00009 – volume: 266 start-page: 2535 issue: 10 year: 2019 ident: 6631_CR42 publication-title: J Neurol doi: 10.1007/s00415-019-09441-7 – volume: 410 start-page: 116645 year: 2020 ident: 6631_CR53 publication-title: J Neurol Sci doi: 10.1016/j.jns.2019.116645 – volume: 44 start-page: 2060 year: 2017 ident: 6631_CR85 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-017-3750-0 – volume: 6 start-page: 331 year: 2009 ident: 6631_CR20 publication-title: Curr Alzheimer Res doi: 10.2174/156720509788929264 – volume: 20 start-page: 823 year: 2018 ident: 6631_CR76 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.09.012 – volume: 46 start-page: 26 year: 2018 ident: 6631_CR41 publication-title: Med Image Anal. doi: 10.1016/j.media.2018.02.002 – volume: 45 start-page: 1470 year: 2018 ident: 6631_CR23 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-4024-1 – volume: 218 start-page: 276 issue: 5 year: 2021 ident: 6631_CR75 publication-title: Br J Psychiatry doi: 10.1192/bjp.2020.234 – volume: 2 start-page: 256 year: 2008 ident: 6631_CR19 publication-title: Dement Neuropsychol doi: 10.1590/S1980-57642009DN20400004 – volume: 12 start-page: 238 year: 2020 ident: 6631_CR32 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2020.00238 – volume: 11 start-page: 33 year: 2017 ident: 6631_CR34 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2017.00033 – volume: 46 start-page: 2370 issue: 11 year: 2019 ident: 6631_CR40 publication-title: Eur J Nucl Med Mol Imaging. doi: 10.1007/s00259-019-04400-w – volume: 14 start-page: 535 year: 2018 ident: 6631_CR8 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2018.02.018 – volume: 48 start-page: 2097 year: 2021 ident: 6631_CR15 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05118-w – volume: 52 start-page: 183 year: 2017 ident: 6631_CR12 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.03.033 – volume: 17 start-page: 79 year: 2003 ident: 6631_CR2 publication-title: Ann Nucl Med doi: 10.1007/BF02988444 – volume: 6 start-page: 1113 issue: 6 year: 2019 ident: 6631_CR36 publication-title: Ann Clin Transl Neurol. doi: 10.1002/acn3.782 – volume: 34 start-page: 415 year: 2020 ident: 6631_CR71 publication-title: Ann Nucl Med doi: 10.1007/s12149-020-01464-9 – volume: 20 start-page: 148 issue: 1 year: 2020 ident: 6631_CR37 publication-title: BMC Neurol doi: 10.1186/s12883-020-01728-x – volume: 11 start-page: 313 issue: 4 year: 2021 ident: 6631_CR57 publication-title: Am J Nucl Med Mol Imaging – volume: 52 start-page: 228 year: 2017 ident: 6631_CR14 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.04.026 – volume: 52 start-page: 214 year: 2017 ident: 6631_CR13 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.07.012 – volume: 50 start-page: 1090 year: 2023 ident: 6631_CR87 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-022-06069-0 – volume: 24 start-page: S732 year: 2009 ident: 6631_CR11 publication-title: Mov Disord doi: 10.1002/mds.22499 – volume: 17 start-page: 819 issue: 5 year: 2017 ident: 6631_CR73 publication-title: Geriatr Gerontol Int doi: 10.1111/ggi.12794 – volume: 261 start-page: 75 year: 2017 ident: 6631_CR79 publication-title: Psychiatry Res Neuroimaging doi: 10.1016/j.pscychresns.2016.12.011 – volume: 61 start-page: 597 issue: 4 year: 2020 ident: 6631_CR64 publication-title: J Nucl Med doi: 10.2967/jnumed.119.230797 – volume: 41 start-page: 5 issue: 1 year: 2020 ident: 6631_CR39 publication-title: Hum Brain Mapp. doi: 10.1002/hbm.24783 – volume: 94 start-page: 743 year: 2020 ident: 6631_CR18 publication-title: Neurology doi: 10.1212/WNL.0000000000009323 – volume: 47 start-page: 3152 year: 2020 ident: 6631_CR31 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-04853-4 – volume: 42 start-page: e96 year: 2017 ident: 6631_CR69 publication-title: Clin Nucl Med doi: 10.1097/RLU.0000000000001477 – volume: 45 start-page: 1497 year: 2018 ident: 6631_CR83 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-018-4039-7 – volume: 41 start-page: 1398 year: 2014 ident: 6631_CR84 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-014-2753-3 – volume: 81 start-page: 5 year: 2010 ident: 6631_CR10 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2008.157370 – volume: 28 start-page: 1123 issue: 4 year: 2021 ident: 6631_CR49 publication-title: Eur J Neurol doi: 10.1111/ene.14639 – volume: 88 start-page: 1009 year: 2020 ident: 6631_CR61 publication-title: Ann Neurol doi: 10.1002/ana.25893 – volume: 15 start-page: 927 year: 2019 ident: 6631_CR33 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.03.016 – volume: 44 start-page: 2042 year: 2017 ident: 6631_CR26 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-017-3761-x – volume: 67 start-page: 1310 year: 2019 ident: 6631_CR30 publication-title: Neurol India doi: 10.4103/0028-3886.271245 – volume: 13 start-page: 764872 year: 2021 ident: 6631_CR48 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.764872 |
SSID | ssj0018289 |
Score | 2.4825847 |
SecondaryResourceType | review_article |
Snippet | Purpose
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive... Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive... PurposeEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1876 |
SubjectTerms | Accuracy Alzheimer's disease Amyloid Atrophy Biomarkers Cardiology Cognition Cognitive ability Cognitive Dysfunction - diagnostic imaging Degeneration Dementia Dementia - diagnostic imaging Dementia disorders Disease Progression Disorders Epidemiology Fluorine isotopes Humans Imaging Imaging techniques Impairment Lewy bodies Lewy body disease Longitudinal studies Medical diagnosis Medical imaging Medicine Medicine & Public Health Meta-analysis Molecular Imaging - methods Nuclear Medicine Oncology Orthopedics Positron emission tomography Quality assessment Quality control Radiology Review Article Reviews Scintigraphy Single photon emission computed tomography Systematic review Tau protein |
Title | Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review |
URI | https://link.springer.com/article/10.1007/s00259-024-06631-y https://www.ncbi.nlm.nih.gov/pubmed/38355740 https://www.proquest.com/docview/3062287993 https://www.proquest.com/docview/2927212323 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXRHl1oa0GiRtYxM7DCRdEoUuF1AohKu0tcmxHitRNwj4O_Sv8WmYcJytUtZdc7DiPGXvmmydj76xWaaailOdaIUAxMuNFpTTXta3ySFkERWTQv7jMzq-SH4t0EQxu6xBWOZ6J_qC2nSEb-UdUbSVq9yhOP_d_OHWNIu9qaKHxkO1T6TICX2oxAS5BaIIAF4IErpC3Q9KMT50jYV9wlFCUgx8LfvO_YLqlbd7ylHoBNH_KngTNEb4MpD5gD1z7jD26CL7x5-zvtyFqDoeh36UDQFfDcuyBC83SdyWCoXH0GpoW-hUtQdHPgMog-ICtoVgHUO4JLJtrC1OUEVBaZbMimyJsOrDeutjoT6Bb2PZkPrCwqw4NQ2bMC3Y1P_v99ZyHzgvcxCrd8FpYJ42Tda2lMqhC2cQliYkio7SQok6cqLIktaqqcl2b1Joo1qioIbyJKhSK8Uu213atO2RgjHEiy3NtbJxUttAoDRGSuyLPakTfcsbE-NtLE8qSU3eM63IqqOxJVSKpSk-q8mbG3k_39ENRjntnH43ULMMGXZc7dpqxt9Mwbi3yl-jWddt1KQupSLJLnPNq4ILpccjDaYpfO2MfRrbYLX73u7y-_13esMdyYEkeiSO2t1lt3TEqPZvqxHM2XvP59xO2f3p2-fPXPyqTAoY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAoMEJ7CaOA8nSAghyrKl3Z5aqbfg2I4UqZsN-xDav8KP4Dcyk9cKVfTWsx3HyYw937wB3litolh5kUi0IgXFyFikudJCFzZPPGVJKWKD_vQknpyF38-j8x340-fCcFhlfyc2F7WdG7aR7xO0lYTuSZx-qn8K7hrF3tW-hUbLFkdu84tUtuXHwwOi71spx19Pv0xE11VAmEBFK1H41knjZFFoqQzBAxu6MDSeZ5T2pV-Ezs_jMLIqzxNdmMgaL9AEQgi6ezld-AGtewNuhkGQcghhMv42eC1Ye2EFj5QSoegsdUk6Taoeg4tUkETknP_AF5t_BeEldHvJM9sIvPE9uNshVfzcstZ92HHVA7g17XzxD-H3QRulR8NYb9MPcF7grO-5i-Ws6YKEbaPqJZYV1gtegqOtkcAnNgFibXEQ5FwXnJUXFoeoJuQ0znLBNkxczdE21sxSf0Bd4bpmc4XFbTVqbDNxHsHZtdDkMexW88o9BTTGOD9OEm1sEOY21SR9wzh1aRIXpO3LEfj9b89MVwadu3FcZEMB54ZUGZEqa0iVbUbwbnimbouAXDl7r6dm1l0Iy2zLviN4PQzTUWb_jK7cfL3MZCoVIwlJc560XDC8js5MFNHXjuB9zxbbxf-_l2dX7-UV3J6cTo-z48OTo-dwR7bsKTx_D3ZXi7V7QYBrlb9suBzhx3Ufq7-MWj2G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qheKLeO-xVUfQJ12abC6bCCLi8dhaW3yw0Le42d1AoCcnPRfk_BV_ir_OmdwOUuxbn7PZXGZm55s7wCurVRQrLxKJVmSgGBmLNFda6MLmiacsGUXs0D85jQ_Pwq_n0fkW_OlrYTitsj8Tm4Pazgz7yA8I2kpC96ROD4ouLeL7ePKhvhQ8QYojrf04jZZFjt36F5lvi_dHY6L1ayknn398OhTdhAFhAhUtReFbJ42TRaGlMgQVbOjC0HieUdqXfhE6P4_DyKo8T3RhImu8QBMgIRjv5XT4B7TvLbitgsTj6QnJ5MsQwWBLho09MlCEIrnqCnaasj0GGqkg7cj1_4Ev1v8qxStI90qUtlF-k3twt0Ot-LFls_uw5aoHsHPSxeUfwu9xm7FHl7HelCLgrMBpP38Xy2kzEQnbodULLCus57wFZ14jAVFsksXaRiHIdS84LS8sDhlOyCWd5Zz9mbicoW08m6V-h7rCVc2uC4ubztTYVuU8grMboclj2K5mldsFNMY4P04SbWwQ5jbVpInDOHVpEhdk-csR-P1vz0zXEp0nc1xkQzPnhlQZkSprSJWtR_BmuKduG4Jcu3q_p2bWHQ6LbMPKI3g5XCax5liNrtxstchkKhWjCklrnrRcMDyO5CeK6GtH8LZni83m_3-Xp9e_ywvYIYHKvh2dHu_BHdlyp_D8fdhezlfuGWGvZf68YXKEnzctVX8BIqtBsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+performance+of+molecular+imaging+methods+in+predicting+the+progression+from+mild+cognitive+impairment+to+dementia%3A+an+updated+systematic+review&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Cotta+Ramusino%2C+Matteo&rft.au=Massa%2C+Federico&rft.au=Festari%2C+Cristina&rft.au=Gandolfo%2C+Federica&rft.date=2024-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=51&rft.issue=7&rft.spage=1876&rft.epage=1890&rft_id=info:doi/10.1007%2Fs00259-024-06631-y&rft.externalDocID=10_1007_s00259_024_06631_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon |