Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review

Purpose Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings. Methods Stud...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of nuclear medicine and molecular imaging Vol. 51; no. 7; pp. 1876 - 1890
Main Authors Cotta Ramusino, Matteo, Massa, Federico, Festari, Cristina, Gandolfo, Federica, Nicolosi, Valentina, Orini, Stefania, Nobili, Flavio, Frisoni, Giovanni B., Morbelli, Silvia, Garibotto, Valentina
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1619-7070
1619-7089
1619-7089
DOI10.1007/s00259-024-06631-y

Cover

Loading…
Abstract Purpose Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings. Methods Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. Results Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [ 18 F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects ( n  > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [ 123 I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP. Conclusion Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
AbstractList Purpose Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings. Methods Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. Results Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [ 18 F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects ( n  > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [ 123 I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP. Conclusion Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
PurposeEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017–2022), highlighting methodological shortcomings.MethodsStudies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.ResultsSensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer’s dementia were 43–100% and 63–94% for [18F]FDG-PET and 64–94% and 48–93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47–100% SE and 71–100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47–100% SE and 71–100% SP.ConclusionMolecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer’s dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings.PURPOSEEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings.Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.METHODSStudies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy.Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP.RESULTSSensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP.Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.CONCLUSIONMolecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [ F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [ I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Author Nicolosi, Valentina
Massa, Federico
Orini, Stefania
Frisoni, Giovanni B.
Garibotto, Valentina
Cotta Ramusino, Matteo
Nobili, Flavio
Morbelli, Silvia
Gandolfo, Federica
Festari, Cristina
Author_xml – sequence: 1
  givenname: Matteo
  orcidid: 0000-0003-3090-9648
  surname: Cotta Ramusino
  fullname: Cotta Ramusino, Matteo
  email: matteo.cottaramusino01@universitadipavia.it
  organization: Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation
– sequence: 2
  givenname: Federico
  surname: Massa
  fullname: Massa, Federico
  organization: Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS Ospedale Policlinico San Martino
– sequence: 3
  givenname: Cristina
  surname: Festari
  fullname: Festari, Cristina
  organization: Laboratory of Alzheimer’s Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli
– sequence: 4
  givenname: Federica
  surname: Gandolfo
  fullname: Gandolfo, Federica
  organization: Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital
– sequence: 5
  givenname: Valentina
  surname: Nicolosi
  fullname: Nicolosi, Valentina
  organization: UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9
– sequence: 6
  givenname: Stefania
  surname: Orini
  fullname: Orini, Stefania
  organization: Alzheimer’s Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Department of Clinical and Experimental Sciences, University of Brescia
– sequence: 7
  givenname: Flavio
  surname: Nobili
  fullname: Nobili, Flavio
  organization: IRCCS Ospedale Policlinico San Martino
– sequence: 8
  givenname: Giovanni B.
  surname: Frisoni
  fullname: Frisoni, Giovanni B.
  organization: Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals
– sequence: 9
  givenname: Silvia
  surname: Morbelli
  fullname: Morbelli, Silvia
  organization: IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa
– sequence: 10
  givenname: Valentina
  surname: Garibotto
  fullname: Garibotto, Valentina
  organization: Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, CIBM Center for Biomedical Imaging
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38355740$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH_gBVggS2zYBPyTxAk7VGhBqsQG1pZjj1NXsX2xnVb3VXhaHG4LUhddeTz6zujMnFN0FGIAhF5T8p4SIj5kQlg3NoS1Del7Tpv9M3RCezo2ggzj0b9akGN0mvMNIXRgw_gCHfOBd51oyQn6_dmpOcRcnMY7SDYmr4IGHC32cQG9Liph59Xswow9lOtoMnYB7xIYp8vWLddQv3FOkLOLAdsUPfZuMVjHObjibqFO2CmXPISCS8QGtsqpj1gFvO6MKmBw3ucCXm1GEtw6uHuJnlu1ZHh1_56hnxdffpx_ba6-X347_3TVaC660lhqgGlg1iomNB-ZaaFtNSFaKMqobYFOfdsZMU2DsrozmnBFupHW_SdOOD9D7w5z6xK_VshFepc1LIsKENcs2cgEo4yzDX37CL2JawrVneSkZ2wQ47hRb-6pdfJg5C7VA6a9fLh6BYYDoFPMOYGV2pW6eQwlKbdISuQWsDwELGvA8m_Acl-l7JH0YfqTIn4Q5QqHGdJ_20-o_gDKObxQ
CitedBy_id crossref_primary_10_1007_s00259_024_06917_1
crossref_primary_10_3390_diagnostics14222474
crossref_primary_10_3233_ADR_240104
crossref_primary_10_1093_geront_gnae075
crossref_primary_10_1177_25424823241312108
crossref_primary_10_1186_s13195_024_01535_3
Cites_doi 10.1136/bmj.j4008
10.1186/s13195-017-0260-z
10.1007/s00259-018-4019-y
10.1007/s00259-020-05187-x
10.1016/j.jalz.2011.03.008
10.1016/j.bbr.2018.02.017
10.3389/fneur.2020.540291
10.1016/j.nicl.2018.03.007
10.1017/S0033291718000995
10.1177/0271678X17732508
10.1109/TMI.2020.3022591
10.3233/JAD-170833
10.1212/WNL.0b013e31823b9c5e
10.2967/jnumed.122.264256
10.1111/ene.13728
10.1016/j.jalz.2011.03.005
10.1016/j.neurobiolaging.2016.02.035
10.1038/s41598-021-93442-y
10.3233/JAD-170395
10.1097/MNM.0000000000001102
10.1016/j.dadm.2018.07.009
10.1002/mds.27603
10.1212/WNL.0000000000008818
10.1002/hbm.25133
10.1007/s00415-020-09790-8
10.1016/j.neurobiolaging.2020.12.009
10.1016/j.jns.2017.11.039
10.1001/jamaneurol.2021.1858
10.3233/JAD-190818
10.1186/s13195-019-0473-4
10.1038/s41598-018-31653-6
10.1007/s00259-021-05483-0
10.1016/j.mcn.2018.12.001
10.1001/jamaneurol.2018.0894
10.1155/2020/2825037
10.3389/fnins.2019.00509
10.2967/jnumed.116.184309
10.1016/j.dadm.2017.05.005
10.2967/jnumed.119.239418
10.1007/s00259-018-4030-3
10.1038/nn.4492
10.3233/JAD-170608
10.1259/bjr.20160156
10.7326/0003-4819-155-8-201110180-00009
10.1007/s00415-019-09441-7
10.1016/j.jns.2019.116645
10.1007/s00259-017-3750-0
10.2174/156720509788929264
10.1016/j.nicl.2018.09.012
10.1016/j.media.2018.02.002
10.1007/s00259-018-4024-1
10.1192/bjp.2020.234
10.1590/S1980-57642009DN20400004
10.3389/fnagi.2020.00238
10.3389/fnhum.2017.00033
10.1007/s00259-019-04400-w
10.1016/j.jalz.2018.02.018
10.1007/s00259-020-05118-w
10.1016/j.neurobiolaging.2016.03.033
10.1007/BF02988444
10.1002/acn3.782
10.1007/s12149-020-01464-9
10.1186/s12883-020-01728-x
10.1016/j.neurobiolaging.2016.04.026
10.1016/j.neurobiolaging.2016.07.012
10.1007/s00259-022-06069-0
10.1002/mds.22499
10.1111/ggi.12794
10.1016/j.pscychresns.2016.12.011
10.2967/jnumed.119.230797
10.1002/hbm.24783
10.1212/WNL.0000000000009323
10.1007/s00259-020-04853-4
10.1097/RLU.0000000000001477
10.1007/s00259-018-4039-7
10.1007/s00259-014-2753-3
10.1136/jnnp.2008.157370
10.1111/ene.14639
10.1002/ana.25893
10.1016/j.jalz.2019.03.016
10.1007/s00259-017-3761-x
10.4103/0028-3886.271245
10.3389/fnagi.2021.764872
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
CorporateAuthor for the European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia
European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia
CorporateAuthor_xml – name: for the European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia
– name: European Inter-Societal Consensus on the Biomarker-Based Diagnosis of Dementia
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00259-024-06631-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-7089
EndPage 1890
ExternalDocumentID 38355740
10_1007_s00259_024_06631_y
Genre Systematic Review
Journal Article
GrantInformation_xml – fundername: F. Hoffmann-La Roche Ltd., Biogen International GmbH, Eisai Europe Limited, Life Molecular Imaging GmbH and OM Pharma Suisse SA
GroupedDBID ---
-5E
-5G
-BR
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
40D
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABECU
ABFTV
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACUHS
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBB
EBC
EBD
EBLON
EBO
EBS
EBX
EHN
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPL
EPT
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
Q~Q
R89
R9I
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TH9
TSG
TSK
TT1
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-f1de2ce2ffa27c392d4e44c00c7a121f4e1b645d7bb8afc5dc03a0591740b3033
IEDL.DBID 7X7
ISSN 1619-7070
1619-7089
IngestDate Fri Jul 11 02:57:12 EDT 2025
Sat Aug 16 19:50:56 EDT 2025
Mon Jul 21 06:08:28 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Tue Jul 01 04:04:44 EDT 2025
Fri Feb 21 02:42:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords FDG-PET
Amyloid-PET
Mild cognitive impairment
Tau-PET
MIBG cardiac scintigraphy
DaT-SPECT
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-f1de2ce2ffa27c392d4e44c00c7a121f4e1b645d7bb8afc5dc03a0591740b3033
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
ObjectType-Review-4
content type line 23
ORCID 0000-0003-3090-9648
PMID 38355740
PQID 3062287993
PQPubID 42802
PageCount 15
ParticipantIDs proquest_miscellaneous_2927212323
proquest_journals_3062287993
pubmed_primary_38355740
crossref_citationtrail_10_1007_s00259_024_06631_y
crossref_primary_10_1007_s00259_024_06631_y
springer_journals_10_1007_s00259_024_06631_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
2024-Jun
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European journal of nuclear medicine and molecular imaging
PublicationTitleAbbrev Eur J Nucl Med Mol Imaging
PublicationTitleAlternate Eur J Nucl Med Mol Imaging
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References JackCRBennettDABlennowKCarrilloMCDunnBHaeberleinSBNIA-AA Research framework: toward a biological definition of Alzheimer’s diseaseAlzheimer’s Dement201814535562
TanRHKrilJJYangYTomNHodgesJRVillemagneVLAssessment of amyloid β in pathologically confirmed Frontotemporal Dementia syndromesAlzheimers Dement (Amst)20179102028653036
NobiliFArbizuJBouwmanFDrzezgaAAgostaFNestorPEANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensusEur J Neurol201825120112171:STN:280:DC%2BB3c%2FgslyrsQ%3D%3D29932266
TondoGCarliGSantangeloRMattoliMVPresottoLFilippiMBiomarker-based stability in limbic-predominant amnestic mild cognitive impairmentEur J Neurol20212841123113310.1111/ene.1463933185922
NedelskaZJosephsKAGraff-RadfordJPrzybelskiSALesnickTGBoeveBF18 F-AV-1451 uptake differs between Dementia with Lewy bodies and posterior cortical atrophyMov Disord201934344352306158046420367
MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D10.1016/j.neurobiolaging.2020.12.00933422890
Cotta RamusinoMPeriniGAltomareDBarbarinoPWeidnerWSalvini PorroGOutcomes of clinical utility in amyloid-PET studies: state of art and future perspectivesEur J Nucl Med Mol Imaging20214821572168335944748175294
FrisoniGBJackCRWinbladBAlzheimer’s disease biomarker development: a call to funding bodiesNeurobiol Aging20175211711828317642
PopescuSGWhittingtonAGunnRNMatthewsPMGlockerBSharpDJNonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer’s diseaseHum Brain Mapp202041154406441810.1002/hbm.25133326438527502835
NicastroNBurkhardPRGaribottoVScan without evidence of dopaminergic deficit (SWEDD) in degenerative Parkinsonism and Dementia with Lewy bodies: a prospective studyJ Neurol Sci2018385172110.1016/j.jns.2017.11.03929406901
MelesSKPaganiMArnaldiDDe CarliFDessiBMorbelliSThe Alzheimer’s disease metabolic brain pattern in mild cognitive impairmentJ Cereb Blood Flow Metab201737364336481:CAS:528:DC%2BC1cXitFKms70%3D289298335718332
GuptaYKimJIKimBCKwonGRClassification and graphical analysis of Alzheimer’s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the APOE genotypeFront Aging Neurosci2020122381:CAS:528:DC%2BB3cXisVSju7fE328487137406801
YeeEPopuriKBegMFAlzheimer’s Disease Neuroimaging InitiativeQuantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia scoreHum Brain Mapp.202041151610.1002/hbm.2478331507022
GuptaVVermaRRanjanRBelhoESSeniarayNDinandVMetabolic imaging patterns in posterior cortical atrophy and Lewy body dementiaNucl Med Commun20194012127512821:CAS:528:DC%2BC1MXisVygt7bN10.1097/MNM.000000000000110231633646
LuDPopuriKDingGWBalachandarRBegMFAlzheimer’s Disease Neuroimaging InitiativeMultiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s diseaseMed Image Anal.201846263410.1016/j.media.2018.02.00229502031
SonniIRatibOBoccardiMPiccoAHerholzKNobiliFClinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the context of a structured 5-phase development frameworkNeurobiol Aging2017522282421:CAS:528:DC%2BC2sXks1Snt70%3D28317651
TengLLiYZhaoYHuTZhangZYaoZPredicting MCI progression with FDG-PET and cognitive scores: a longitudinal studyBMC Neurol20202011481:CAS:528:DC%2BB3cXnslGlsLg%3D10.1186/s12883-020-01728-x323169127171825
RobertsGDonaghyPCLloydJDurcanRPetridesGCollobySJAccuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodiesBr J Psychiatry2021218527628210.1192/bjp.2020.23433355065
FordJNSweeneyEMSkafidaMGlynnSAmoashiyMLangeDJHeuristic scoring method utilizing FDG-PET statistical parametric mapping in the evaluation of suspected Alzheimer disease and frontotemporal lobar degenerationAm J Nucl Med Mol Imaging20211143133261:CAS:528:DC%2BB3MXivVaku7fP345132858414399
CaminitiSPSalaAIaccarinoLBerettaLPilottoAGianolliLBrain glucose metabolism in Lewy body dementia: implications for diagnostic criteriaAlzheimers Res Ther20191120307972406387558
WoltersEEDodichABoccardiMCorreJDrzezgaAHanssonOClinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development frameworkEur J Nucl Med Mol Imaging202148209721091:CAS:528:DC%2BB3MXmsVChtbs%3D335475568175307
HuangYXuJZhouYTongTZhuangXAlzheimer’s Disease Neuroimaging Initiative (ADNI)Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural networkFront Neurosci.20191350910.3389/fnins.2019.00509312139676555226
ArbizuJFestariCAltomareDWalkerZBouwmanFRivoltaJClinical utility of FDG-PET for the differential diagnosis in MCIEur J Nucl Med Mol Imaging201845149715081:CAS:528:DC%2BC1cXosFGlu7w%3D29704037
RabinoviciGDRosenHJAlkalayAKornakJFurstAJAgarwalNAmyloid vs FDG-PET in the differential diagnosis of AD and FTLDNeurology201177203420421:CAS:528:DC%2BC3MXhsFOhur%2FI221315413236517
RogalskiEJMesulamMMClinical trajectories and biological features of Primary Progressive Aphasia (PPA)Curr Alzheimer Res200963313361:CAS:528:DC%2BD1MXovV2rsb8%3D196892312863134
EtminaniKSolimanADavidssonAChangJRMartínez-SanchisBByttnerSA 3D deep learning model to predict the diagnosis of Dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PETEur J Nucl Med Mol Imaging20224925635841:CAS:528:DC%2BB3MXhvF2qtr7F10.1007/s00259-021-05483-034328531
ShimizuSKanetakaHHiraoKFukasawaRNamiokaNHatanakaHNeuroimaging for diagnosing Dementia with Lewy bodies: what is the best neuroimaging technique in discriminating Dementia with Lewy bodies from Alzheimer’s disease?Geriatr Gerontol Int201717581982410.1111/ggi.1279427138074
NicastroNGaribottoVAllaliGAssalFBurkhardPRAdded value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of Dementia with Lewy bodiesClin Nucl Med201742e96e10227941373
CecchinDBarthelHPoggialiDCagninATiepoltSZucchettaPA new integrated dual time-point amyloid PET/MRI data analysis methodEur J Nucl Med Mol Imaging201744206020721:CAS:528:DC%2BC2sXhtFKiu7rO28674847
PanXPhanTLAdelMFossatiCGaidonTWojakJMulti-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imagingIEEE Trans Med Imaging2021401819210.1109/TMI.2020.302259132894711
KantarciKLoweVJChenQPrzybelskiSALesnickTGSchwarzCGβ-amyloid PET and neuropathology in Dementia with Lewy bodiesNeurology202094e282e2911:CAS:528:DC%2BB3cXjvVGnur0%3D318627837108811
BlumDLiepelt-ScarfoneIBergDGasserTla FougèreCReimoldMAlzheimer’s Disease Neuroimaging InitiativeControls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PETEur J Nucl Med Mol Imaging.201946112370237910.1007/s00259-019-04400-w31338550
KangSWJeonSLeeYGParkMBaikKJungJHImplication of metabolic and dopamine transporter PET in Dementia with Lewy bodiesSci Rep2021111143941:CAS:528:DC%2BB3MXhs1Cmur3F10.1038/s41598-021-93442-y342573498277897
BoccardiMFestariCAltomareDGandolfoFOriniSNobiliFAssessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementiaEur J Nucl Med Mol Imaging201845147014861:CAS:528:DC%2BC1cXovVWnu7k%3D29713763
InuiYItoKKatoTSEAD-J Study GroupLonger-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter studyJ Alzheimers Dis.20176038778871:CAS:528:DC%2BC2sXhs1WrsbrE10.3233/JAD-170395289221575676852
BeyerLBrendelMScheiweinFSauerbeckJHosakawaCAlbertsIImproved risk stratification for progression from mild cognitive impairment to Alzheimer’s disease with a multi-analytical evaluation of amyloid-β positron emission tomographyJ Alzheimers Dis2020741011121:CAS:528:DC%2BB3cXks1GhtbY%3D31985461
Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Joint Assessment of quantitative 18F-Florbetapir and 18F-FDG regional uptake using baseline data from the ADNIJ Alzheimers Dis.20186213994081:CAS:528:DC%2BC1cXitl2mu7g%3D10.3233/JAD-17083329439345
Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 databaseAlzheimers Res Ther.201791321:CAS:528:DC%2BC1cXmsl2ktrc%3D10.1186/s13195-017-0260-z284419675405503
GjerumLFrederiksenKSHenriksenOMLawIAnderbergLAndersenBBA visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate Dementia with Lewy bodies and Alzheimer’s diseaseJ Neurol Sci20204101166451:CAS:528:DC%2BB3cXjvFKjtw%3D%3D10.1016/j.jns.2019.11664531911283
LoweVJLundtESAlbertsonSMPrzybelskiSASenjemMLParisiJENeuroimaging correlates with neuropathologic schemes in neurodegenerative diseaseAlzheimers Dement20191592793931175025
MaltaisDDJordanLGMinHKMiyagawaTPrzybelskiSALesnickTGConfirmation of 123I-FP-CIT SPECT quantification methods in Dementia with Lewy bodies and other neurodegenerative disordersJ Nucl Med202061162816351:CAS:528:DC%2BB3cXisVKlsLnL321983109364894
ChoiHJinKHAlzheimer’s Disease Neuroimaging InitiativePredicting cognitive decline with deep learning of brain metabolism and amyloid imagingBehav Brain Res.20183441031091:CAS:528:DC%2BC1cXjsF2nsrw%3D10.1016/j.bbr.2018.02.01729454006
TaraganoFEAllegriRFLyketsosCMild behavioral impairment: a prodromal stage of dementiaDement Neuropsychol20082256260292135815619076
InagawaYKanetakaHTsugawaASakuraiSSerisawaSShimizuSEfficacy of olfactory and pareidolia tests compared with
M Schöll (6631_CR9) 2019; 97
F Nobili (6631_CR4) 2018; 25
M Wang (6631_CR47) 2020; 2020
M Pagani (6631_CR25) 2017; 58
K Popuri (6631_CR27) 2018; 18
VJ Lowe (6631_CR33) 2019; 15
D Blum (6631_CR40) 2019; 46
D Altomare (6631_CR42) 2019; 266
V Garibotto (6631_CR12) 2017; 52
F Sakamoto (6631_CR80) 2017; 90
DD Maltais (6631_CR68) 2020; 61
Y Gupta (6631_CR32) 2020; 12
X Pan (6631_CR46) 2021; 40
SG Popescu (6631_CR66) 2020; 41
G Kägi (6631_CR10) 2010; 81
E Yee (6631_CR39) 2020; 41
K Etminani (6631_CR51) 2022; 49
P Zhou (6631_CR48) 2021; 13
I Sonni (6631_CR14) 2017; 52
Z Nedelska (6631_CR78) 2019; 34
J Arbizu (6631_CR83) 2018; 45
O Rascol (6631_CR11) 2009; 24
K Liu (6631_CR34) 2017; 11
C Boccalini (6631_CR86) 2022; 64
K Chiotis (6631_CR13) 2017; 52
IG McKeith (6631_CR18) 2020; 94
G Blazhenets (6631_CR64) 2020; 61
SP Caminiti (6631_CR29) 2019; 11
A Nazem (6631_CR55) 2018; 10
SK Meles (6631_CR28) 2017; 37
FE Taragano (6631_CR19) 2008; 2
SM Landau (6631_CR84) 2014; 41
GM McKhann (6631_CR7) 2011; 7
M Boccardi (6631_CR23) 2018; 45
ER Zimmer (6631_CR3) 2017; 20
EJ Rogalski (6631_CR20) 2009; 6
T Miyagawa (6631_CR63) 2021; 99
HS Yoo (6631_CR67) 2018; 45
V Gupta (6631_CR52) 2019; 40
F Nobili (6631_CR81) 2018; 45
N Nicastro (6631_CR77) 2018; 385
L Gjerum (6631_CR53) 2020; 410
DA Wolk (6631_CR59) 2018; 75
D Cecchin (6631_CR85) 2017; 44
WA Krudop (6631_CR56) 2017; 60
MS Albert (6631_CR6) 2011; 7
AJ Thomas (6631_CR72) 2019; 49
G Tondo (6631_CR49) 2021; 28
S Shimizu (6631_CR73) 2017; 17
EE Wolters (6631_CR15) 2021; 48
R Ossenkoppele (6631_CR88) 2021; 78
M Pagani (6631_CR26) 2017; 44
N Nicastro (6631_CR69) 2017; 42
F Ben Bouallègue (6631_CR44) 2018; 62
Y Manabe (6631_CR79) 2017; 261
D Lu (6631_CR41) 2018; 46
CR Jack (6631_CR8) 2018; 14
SW Kang (6631_CR50) 2021; 11
L Beyer (6631_CR58) 2020; 74
MJ Page (6631_CR21) 2021; 372
A Katako (6631_CR35) 2018; 8
T Miyagawa (6631_CR74) 2021; 99
F Ben Bouallègue (6631_CR65) 2017; 9
GD Rabinovici (6631_CR82) 2011; 77
G Roberts (6631_CR75) 2021; 218
H Choi (6631_CR43) 2018; 344
Y Inui (6631_CR45) 2017; 60
M Cotta Ramusino (6631_CR17) 2021; 48
JJ Lloyd (6631_CR76) 2018; 20
F Lanfranchi (6631_CR87) 2023; 50
T Iizuka (6631_CR54) 2020; 267
KA Johnson (6631_CR5) 2013; 54
A Ghirelli (6631_CR61) 2020; 88
Y Huang (6631_CR38) 2019; 13
F Sakamoto (6631_CR71) 2020; 34
PF Whiting (6631_CR24) 2011; 155
RH Tan (6631_CR60) 2017; 9
Y Inagawa (6631_CR70) 2020; 11
6631_CR1
L Teng (6631_CR37) 2020; 20
R Santangelo (6631_CR31) 2020; 47
K Kantarci (6631_CR62) 2020; 94
M Tripathi (6631_CR30) 2019; 67
BJ Shea (6631_CR22) 2017; 358
JN Ford (6631_CR57) 2021; 11
K Herholz (6631_CR2) 2003; 17
GB Frisoni (6631_CR16) 2017; 52
L Iaccarino (6631_CR36) 2019; 6
References_xml – reference: PaganiMNobiliFMorbelliSArnaldiDGiulianiAÖbergJEarly identification of MCI converting to AD: a FDG PET studyEur J Nucl Med Mol Imaging201744204220521:CAS:528:DC%2BC2sXhtVyrsLrE28664464
– reference: YeeEPopuriKBegMFAlzheimer’s Disease Neuroimaging InitiativeQuantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia scoreHum Brain Mapp.202041151610.1002/hbm.2478331507022
– reference: JackCRBennettDABlennowKCarrilloMCDunnBHaeberleinSBNIA-AA Research framework: toward a biological definition of Alzheimer’s diseaseAlzheimer’s Dement201814535562
– reference: MelesSKPaganiMArnaldiDDe CarliFDessiBMorbelliSThe Alzheimer’s disease metabolic brain pattern in mild cognitive impairmentJ Cereb Blood Flow Metab201737364336481:CAS:528:DC%2BC1cXitFKms70%3D289298335718332
– reference: ZhouPZengRYuLFengYChenCLiFDeep-learning radiomics for discrimination conversion of Alzheimer’s disease in patients with mild cognitive impairment: a study based on 18F-FDG PET imagingFront Aging Neurosci2021137648721:CAS:528:DC%2BB38Xot1Oktro%3D10.3389/fnagi.2021.764872347648648576572
– reference: PopuriKBalachandarRAlpertKLuDBhallaMMackenzieIRDevelopment and validation of a novel dementia of Alzheimer’s type (DAT) score based on metabolism FDG-PET imagingNeuroimage Clin201818802813298762665988459
– reference: SantangeloRMasseriniFAgostaFSalaACaminitiSPCecchettiGCSF p-tau/Aβ42 ratio and brain FDG-PET may reliably detect MCI “imminent” converters to ADEur J Nucl Med Mol Imaging202047315231641:CAS:528:DC%2BB3cXpsFOlt7s%3D32415550
– reference: ZimmerERParentMJSouzaDGLeuzyALecruxCKimH[18F]FDG PET signal is driven by astroglial glutamate transportNat Neurosci2017203933951:CAS:528:DC%2BC2sXhvVeisbs%3D281352415378483
– reference: CecchinDBarthelHPoggialiDCagninATiepoltSZucchettaPA new integrated dual time-point amyloid PET/MRI data analysis methodEur J Nucl Med Mol Imaging201744206020721:CAS:528:DC%2BC2sXhtFKiu7rO28674847
– reference: WoltersEEDodichABoccardiMCorreJDrzezgaAHanssonOClinical validity of increased cortical uptake of [18F]flortaucipir on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase biomarker development frameworkEur J Nucl Med Mol Imaging202148209721091:CAS:528:DC%2BB3MXmsVChtbs%3D335475568175307
– reference: LoweVJLundtESAlbertsonSMPrzybelskiSASenjemMLParisiJENeuroimaging correlates with neuropathologic schemes in neurodegenerative diseaseAlzheimers Dement20191592793931175025
– reference: ChiotisKSaint-AubertLBoccardiMGietlAPiccoAVarroneAClinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development frameworkNeurobiol Aging2017522142271:CAS:528:DC%2BC2sXks1Snt7o%3D28317650
– reference: GhirelliATosakulwongNWeigandSDClarkHMAliFBothaHSensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degenerationAnn Neurol202088100910221:CAS:528:DC%2BB3cXitFehsLfI328693627861121
– reference: LanfranchiFArnaldiDMiceliAMattioliPD'AmicoFRaffaSDifferent z-score cut-offs for striatal binding ratio (SBR) of DaT SPECT are needed to support the diagnosis of Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB)Eur J Nucl Med Mol Imaging2023501090110236471041
– reference: NobiliFArbizuJBouwmanFDrzezgaAAgostaFNestorPEANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensusEur J Neurol201825120112171:STN:280:DC%2BB3c%2FgslyrsQ%3D%3D29932266
– reference: SakamotoFShiraishiSTsudaNHashimotoMTomiguchiSIkedaMDiagnosis of Dementia with Lewy bodies: can 123I-IMP and 123I-MIBG scintigraphy yield new core features?Br J Radiol20179010702016015610.1259/bjr.20160156278970645685106
– reference: BoccardiMFestariCAltomareDGandolfoFOriniSNobiliFAssessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementiaEur J Nucl Med Mol Imaging201845147014861:CAS:528:DC%2BC1cXovVWnu7k%3D29713763
– reference: RobertsGDonaghyPCLloydJDurcanRPetridesGCollobySJAccuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodiesBr J Psychiatry2021218527628210.1192/bjp.2020.23433355065
– reference: NazemATangCCSpetsierisPDreselCGordonMLDiehl-SchmidJA multivariate metabolic imaging marker for behavioral variant Frontotemporal DementiaAlzheimers Dement (Amst)20181058359410.1016/j.dadm.2018.07.00930417069
– reference: JohnsonKAMinoshimaSBohnenNIDonohoeKJFosterNLHerscovitchPAppropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s AssociationAlzheimer’s Dement2013544764901:CAS:528:DC%2BC3sXltV2ks7g%3D
– reference: WolkDASadowskyCSafirsteinBRinneJODuaraRPerryRUse of flutemetamol F 18-labeled positron emission tomography and other biomarkers to assess risk of clinical progression in patients with amnestic mild cognitive impairmentJAMA Neurol20187511141123297999846143120
– reference: ArbizuJFestariCAltomareDWalkerZBouwmanFRivoltaJClinical utility of FDG-PET for the differential diagnosis in MCIEur J Nucl Med Mol Imaging201845149715081:CAS:528:DC%2BC1cXosFGlu7w%3D29704037
– reference: FrisoniGBJackCRWinbladBAlzheimer’s disease biomarker development: a call to funding bodiesNeurobiol Aging20175211711828317642
– reference: PaganiMGiulianiAÖbergJDe CarliFMorbelliSGirtlerNProgressive disintegration of brain networking from normal aging to Alzheimer disease: analysis of independent components of 18F-FDG PET dataJ Nucl Med2017581132113928280223
– reference: NedelskaZJosephsKAGraff-RadfordJPrzybelskiSALesnickTGBoeveBF18 F-AV-1451 uptake differs between Dementia with Lewy bodies and posterior cortical atrophyMov Disord201934344352306158046420367
– reference: BlumDLiepelt-ScarfoneIBergDGasserTla FougèreCReimoldMAlzheimer’s Disease Neuroimaging InitiativeControls-based denoising, a new approach for medical image analysis, improves prediction of conversion to Alzheimer’s disease with FDG-PETEur J Nucl Med Mol Imaging.201946112370237910.1007/s00259-019-04400-w31338550
– reference: HuangYXuJZhouYTongTZhuangXAlzheimer’s Disease Neuroimaging Initiative (ADNI)Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural networkFront Neurosci.20191350910.3389/fnins.2019.00509312139676555226
– reference: NicastroNBurkhardPRGaribottoVScan without evidence of dopaminergic deficit (SWEDD) in degenerative Parkinsonism and Dementia with Lewy bodies: a prospective studyJ Neurol Sci2018385172110.1016/j.jns.2017.11.03929406901
– reference: InuiYItoKKatoTSEAD-J Study GroupLonger-term investigation of the value of 18F-FDG-PET and magnetic resonance imaging for predicting the conversion of mild cognitive impairment to Alzheimer’s disease: a multicenter studyJ Alzheimers Dis.20176038778871:CAS:528:DC%2BC2sXhs1WrsbrE10.3233/JAD-170395289221575676852
– reference: TondoGCarliGSantangeloRMattoliMVPresottoLFilippiMBiomarker-based stability in limbic-predominant amnestic mild cognitive impairmentEur J Neurol20212841123113310.1111/ene.1463933185922
– reference: WangMYanZXiaoSYZuoCJiangJA novel metabolic connectome method to predict progression to mild cognitive impairmentBehav Neurol20202020282503710.1155/2020/2825037329086137450311
– reference: NicastroNGaribottoVAllaliGAssalFBurkhardPRAdded value of combined semi-quantitative and visual [123I]FP-CIT SPECT analyses for the diagnosis of Dementia with Lewy bodiesClin Nucl Med201742e96e10227941373
– reference: CaminitiSPSalaAIaccarinoLBerettaLPilottoAGianolliLBrain glucose metabolism in Lewy body dementia: implications for diagnostic criteriaAlzheimers Res Ther20191120307972406387558
– reference: KrudopWADolsAKerssensCJEikelenboomPPrinsNDMöllerCThe pitfall of behavioral variant Frontotemporal Dementia mimics despite multidisciplinary application of the FTDC criteriaJ Alzheimers Dis201760395997510.3233/JAD-17060828984605
– reference: YooHSChungSJKimSJOhJSKimJSYeBSThe role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and Frontotemporal Dementia in the early stageEur J Nucl Med Mol Imaging2018451585159529728749
– reference: RascolOScheloskyL123 I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disordersMov Disord200924S732S74119877202
– reference: TengLLiYZhaoYHuTZhangZYaoZPredicting MCI progression with FDG-PET and cognitive scores: a longitudinal studyBMC Neurol20202011481:CAS:528:DC%2BB3cXnslGlsLg%3D10.1186/s12883-020-01728-x323169127171825
– reference: McKeithIGFermanTJThomasAJBlancFBoeveBFFujishiroHResearch criteria for the diagnosis of prodromal Dementia with Lewy bodiesNeurology202094743755322419557274845
– reference: Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Joint Assessment of quantitative 18F-Florbetapir and 18F-FDG regional uptake using baseline data from the ADNIJ Alzheimers Dis.20186213994081:CAS:528:DC%2BC1cXitl2mu7g%3D10.3233/JAD-17083329439345
– reference: ThomasAJDonaghyPRobertsGCollobySJBarnettNAPetridesGDiagnostic accuracy of dopaminergic imaging in prodromal Dementia with Lewy bodiesPsychol Med201949339640210.1017/S003329171800099529692275
– reference: SchöllMMaassAMattssonNAshtonNJBlennowKZetterbergHBiomarkers for tau pathologyMol Cell Neurosci2019971833305296016584358
– reference: SonniIRatibOBoccardiMPiccoAHerholzKNobiliFClinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the context of a structured 5-phase development frameworkNeurobiol Aging2017522282421:CAS:528:DC%2BC2sXks1Snt70%3D28317651
– reference: NobiliFFestariCAltomareDAgostaFOriniSVan LaereKAutomated assessment of FDG-PET for differential diagnosis in patients with neurodegenerative disordersEur J Nucl Med Mol Imaging201845155715661:CAS:528:DC%2BC1cXovVWksLg%3D29721650
– reference: PanXPhanTLAdelMFossatiCGaidonTWojakJMulti-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imagingIEEE Trans Med Imaging2021401819210.1109/TMI.2020.302259132894711
– reference: IizukaTKameyamaMSpatial metabolic profiles to discriminate Dementia with Lewy bodies from Alzheimer diseaseJ Neurol202026771960196910.1007/s00415-020-09790-832170446
– reference: KägiGBhatiaKPTolosaEThe role of DAT-SPECT in movement disordersJ Neurol Neurosurg Psychiatry20108151220019219
– reference: Cotta RamusinoMPeriniGAltomareDBarbarinoPWeidnerWSalvini PorroGOutcomes of clinical utility in amyloid-PET studies: state of art and future perspectivesEur J Nucl Med Mol Imaging20214821572168335944748175294
– reference: PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA 2020 statement: an updated guideline for reporting systematic reviewsBMJ2021372337820578005924
– reference: WhitingPFRutjesAWSWestwoodMEMallettSDeeksJJReitsmaJBQUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studiesAnn Intern Med201115552953622007046
– reference: LloydJJPetridesGDonaghyPCCollobySJAttemsJO'BrienJTA new visual rating scale for ioflupane imaging in Lewy body diseaseNeuroimage Clin20182082382910.1016/j.nicl.2018.09.012302689916169248
– reference: Ben BouallègueFMariano-GoulartDPayouxPAlzheimer’s Disease Neuroimaging Initiative (ADNI)Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 databaseAlzheimers Res Ther.201791321:CAS:528:DC%2BC1cXmsl2ktrc%3D10.1186/s13195-017-0260-z284419675405503
– reference: AlbertMSDeKoskySTDicksonDDuboisBFeldmanHHFoxNCThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement20117270279
– reference: PopescuSGWhittingtonAGunnRNMatthewsPMGlockerBSharpDJNonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer’s diseaseHum Brain Mapp202041154406441810.1002/hbm.25133326438527502835
– reference: RogalskiEJMesulamMMClinical trajectories and biological features of Primary Progressive Aphasia (PPA)Curr Alzheimer Res200963313361:CAS:528:DC%2BD1MXovV2rsb8%3D196892312863134
– reference: InagawaYKanetakaHTsugawaASakuraiSSerisawaSShimizuSEfficacy of olfactory and pareidolia tests compared with that of indicative biomarkers in diagnosis of Dementia with Lewy bodiesFront Neurol202011540291330419917517047
– reference: MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D10.1016/j.neurobiolaging.2020.12.00933422890
– reference: OssenkoppeleRSmithRMattsson-CarlgrenNGrootCLeuzyAStrandbergOAccuracy of tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imagingJAMA Neurol202178961971341809568240013
– reference: ChoiHJinKHAlzheimer’s Disease Neuroimaging InitiativePredicting cognitive decline with deep learning of brain metabolism and amyloid imagingBehav Brain Res.20183441031091:CAS:528:DC%2BC1cXjsF2nsrw%3D10.1016/j.bbr.2018.02.01729454006
– reference: HerholzKPET studies in dementiaAnn Nucl Med200317798912790355
– reference: TripathiMTripathiMParidaGKKumarRDwivediSNehraABiomarker-based prediction of progression to dementia: F-18 FDG-PET in amnestic MCINeurol India2019671310131731744965
– reference: KantarciKLoweVJChenQPrzybelskiSALesnickTGSchwarzCGβ-amyloid PET and neuropathology in Dementia with Lewy bodiesNeurology202094e282e2911:CAS:528:DC%2BB3cXjvVGnur0%3D318627837108811
– reference: GaribottoVHerholzKBoccardiMPiccoAVarroneANordbergAClinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development frameworkNeurobiol Aging2017521831951:CAS:528:DC%2BC2sXks1Snt7k%3D28317648
– reference: LiuKChenKYaoLGuoXPrediction of mild cognitive impairment conversion using a combination of independent component analysis and the Cox modelFront Hum Neurosci2017113310.3389/fnhum.2017.00033282200655292818
– reference: GuptaVVermaRRanjanRBelhoESSeniarayNDinandVMetabolic imaging patterns in posterior cortical atrophy and Lewy body dementiaNucl Med Commun20194012127512821:CAS:528:DC%2BC1MXisVygt7bN10.1097/MNM.000000000000110231633646
– reference: GjerumLFrederiksenKSHenriksenOMLawIAnderbergLAndersenBBA visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate Dementia with Lewy bodies and Alzheimer’s diseaseJ Neurol Sci20204101166451:CAS:528:DC%2BB3cXjvFKjtw%3D%3D10.1016/j.jns.2019.11664531911283
– reference: TanRHKrilJJYangYTomNHodgesJRVillemagneVLAssessment of amyloid β in pathologically confirmed Frontotemporal Dementia syndromesAlzheimers Dement (Amst)20179102028653036
– reference: SheaBJReevesBCWellsGThukuMHamelCMoranJAMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or bothBMJ2017358j400810.1136/bmj.j4008289357015833365
– reference: LuDPopuriKDingGWBalachandarRBegMFAlzheimer’s Disease Neuroimaging InitiativeMultiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s diseaseMed Image Anal.201846263410.1016/j.media.2018.02.00229502031
– reference: KangSWJeonSLeeYGParkMBaikKJungJHImplication of metabolic and dopamine transporter PET in Dementia with Lewy bodiesSci Rep2021111143941:CAS:528:DC%2BB3MXhs1Cmur3F10.1038/s41598-021-93442-y342573498277897
– reference: EtminaniKSolimanADavidssonAChangJRMartínez-SanchisBByttnerSA 3D deep learning model to predict the diagnosis of Dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PETEur J Nucl Med Mol Imaging20224925635841:CAS:528:DC%2BB3MXhvF2qtr7F10.1007/s00259-021-05483-034328531
– reference: ShimizuSKanetakaHHiraoKFukasawaRNamiokaNHatanakaHNeuroimaging for diagnosing Dementia with Lewy bodies: what is the best neuroimaging technique in discriminating Dementia with Lewy bodies from Alzheimer’s disease?Geriatr Gerontol Int201717581982410.1111/ggi.1279427138074
– reference: RabinoviciGDRosenHJAlkalayAKornakJFurstAJAgarwalNAmyloid vs FDG-PET in the differential diagnosis of AD and FTLDNeurology201177203420421:CAS:528:DC%2BC3MXhsFOhur%2FI221315413236517
– reference: FordJNSweeneyEMSkafidaMGlynnSAmoashiyMLangeDJHeuristic scoring method utilizing FDG-PET statistical parametric mapping in the evaluation of suspected Alzheimer disease and frontotemporal lobar degenerationAm J Nucl Med Mol Imaging20211143133261:CAS:528:DC%2BB3MXivVaku7fP345132858414399
– reference: GuptaYKimJIKimBCKwonGRClassification and graphical analysis of Alzheimer’s disease and its prodromal stage using multimodal features from structural, diffusion, and functional neuroimaging data and the APOE genotypeFront Aging Neurosci2020122381:CAS:528:DC%2BB3cXisVSju7fE328487137406801
– reference: BoccaliniCPerettiDERibaldiFSchefflerMStampacchiaSTomczykSEarly-phase 18F-florbetapir and 18F-flutemetamol images as proxies of brain metabolism in a memory clinic settingJ Nucl Med20226426627335863896
– reference: Frisoni GB, Festari C, Massa F, Cotta Ramusino M, Orini S, Aarsland D, et al. European inter-societal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Accepted for publication in Lancet Neurol.
– reference: SakamotoFShiraishiSOgasawaraKTsudaNNakagawaMTomiguchiSA diagnostic strategy for Lewy body disease using DAT-SPECT, MIBG and combined indexAnn Nucl Med2020344154231:CAS:528:DC%2BB3cXnsVWiu7o%3D32301068
– reference: LandauSMThomasBAThurfjellLSchmidtMMargolinRMintunMAmyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracersEur J Nucl Med Mol Imaging201441139814071:CAS:528:DC%2BC2cXkslSqu7o%3D246475774055504
– reference: AltomareDFerrariCCaroliAGalluzziSPrestiaAvan der FlierWMPrognostic value of Alzheimer’s biomarkers in mild cognitive impairment: the effect of age at onsetJ Neurol201926610253525451:CAS:528:DC%2BC1MXhtlegsrbM10.1007/s00415-019-09441-731267207
– reference: BeyerLBrendelMScheiweinFSauerbeckJHosakawaCAlbertsIImproved risk stratification for progression from mild cognitive impairment to Alzheimer’s disease with a multi-analytical evaluation of amyloid-β positron emission tomographyJ Alzheimers Dis2020741011121:CAS:528:DC%2BB3cXks1GhtbY%3D31985461
– reference: MiyagawaTPrzybelskiSAMaltaisDMinHKJordanLLesnickTGThe value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of Dementia with Lewy bodies and Alzheimer’s disease dementiaNeurobiol Aging20219911181:CAS:528:DC%2BB3MXitlSjsLw%3D33422890
– reference: TaraganoFEAllegriRFLyketsosCMild behavioral impairment: a prodromal stage of dementiaDement Neuropsychol20082256260292135815619076
– reference: IaccarinoLSalaAPeraniDAlzheimer’s Disease Neuroimaging InitiativePredicting long-term clinical stability in amyloid-positive subjects by FDG-PETAnn Clin Transl Neurol.201966111311201:CAS:528:DC%2BC1MXhtFGjs7%2FE10.1002/acn3.782312111766562030
– reference: BlazhenetsGMaYSörensenASchillerFRückerGEidelbergDPredictive value of 18F-Florbetapir and 18F-FDG PET for conversion from mild cognitive impairment to Alzheimer dementiaJ Nucl Med20206145976031:CAS:528:DC%2BB3cXhvVOisL%2FK10.2967/jnumed.119.230797316282157198373
– reference: ManabeYInuiYToyamaHKosakaK123I-metaiodobenzylguanidine myocardial scintigraphy with early images alone is useful for the differential diagnosis of Dementia with Lewy bodiesPsychiatry Res Neuroimaging2017261757910.1016/j.pscychresns.2016.12.01128152401
– reference: KatakoASheltonPGoertzenALLevinDBybelBAljuaidMMachine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementiaSci Rep201881132361:CAS:528:DC%2BC1MXnt1Khsw%3D%3D10.1038/s41598-018-31653-6301858066125295
– reference: MaltaisDDJordanLGMinHKMiyagawaTPrzybelskiSALesnickTGConfirmation of 123I-FP-CIT SPECT quantification methods in Dementia with Lewy bodies and other neurodegenerative disordersJ Nucl Med202061162816351:CAS:528:DC%2BB3cXisVKlsLnL321983109364894
– reference: McKhannGMKnopmanDSChertkowHHymanBTJackCRJrKawasCHThe diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement20117263269
– volume: 358
  start-page: j4008
  year: 2017
  ident: 6631_CR22
  publication-title: BMJ
  doi: 10.1136/bmj.j4008
– volume: 9
  start-page: 32
  issue: 1
  year: 2017
  ident: 6631_CR65
  publication-title: Alzheimers Res Ther.
  doi: 10.1186/s13195-017-0260-z
– volume: 45
  start-page: 1585
  year: 2018
  ident: 6631_CR67
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-4019-y
– volume: 48
  start-page: 2157
  year: 2021
  ident: 6631_CR17
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05187-x
– volume: 7
  start-page: 270
  year: 2011
  ident: 6631_CR6
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2011.03.008
– volume: 344
  start-page: 103
  year: 2018
  ident: 6631_CR43
  publication-title: Behav Brain Res.
  doi: 10.1016/j.bbr.2018.02.017
– volume: 11
  start-page: 540291
  year: 2020
  ident: 6631_CR70
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.540291
– volume: 18
  start-page: 802
  year: 2018
  ident: 6631_CR27
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.03.007
– volume: 49
  start-page: 396
  issue: 3
  year: 2019
  ident: 6631_CR72
  publication-title: Psychol Med
  doi: 10.1017/S0033291718000995
– volume: 37
  start-page: 3643
  year: 2017
  ident: 6631_CR28
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X17732508
– volume: 40
  start-page: 81
  issue: 1
  year: 2021
  ident: 6631_CR46
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3022591
– volume: 62
  start-page: 399
  issue: 1
  year: 2018
  ident: 6631_CR44
  publication-title: J Alzheimers Dis.
  doi: 10.3233/JAD-170833
– volume: 77
  start-page: 2034
  year: 2011
  ident: 6631_CR82
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31823b9c5e
– volume: 54
  start-page: 476
  year: 2013
  ident: 6631_CR5
  publication-title: Alzheimer’s Dement
– volume: 64
  start-page: 266
  year: 2022
  ident: 6631_CR86
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.122.264256
– volume: 25
  start-page: 1201
  year: 2018
  ident: 6631_CR4
  publication-title: Eur J Neurol
  doi: 10.1111/ene.13728
– volume: 7
  start-page: 263
  year: 2011
  ident: 6631_CR7
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 52
  start-page: 117
  year: 2017
  ident: 6631_CR16
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.02.035
– volume: 11
  start-page: 14394
  issue: 1
  year: 2021
  ident: 6631_CR50
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93442-y
– volume: 60
  start-page: 877
  issue: 3
  year: 2017
  ident: 6631_CR45
  publication-title: J Alzheimers Dis.
  doi: 10.3233/JAD-170395
– volume: 40
  start-page: 1275
  issue: 12
  year: 2019
  ident: 6631_CR52
  publication-title: Nucl Med Commun
  doi: 10.1097/MNM.0000000000001102
– volume: 10
  start-page: 583
  year: 2018
  ident: 6631_CR55
  publication-title: Alzheimers Dement (Amst)
  doi: 10.1016/j.dadm.2018.07.009
– volume: 34
  start-page: 344
  year: 2019
  ident: 6631_CR78
  publication-title: Mov Disord
  doi: 10.1002/mds.27603
– volume: 94
  start-page: e282
  year: 2020
  ident: 6631_CR62
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000008818
– volume: 41
  start-page: 4406
  issue: 15
  year: 2020
  ident: 6631_CR66
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25133
– volume: 267
  start-page: 1960
  issue: 7
  year: 2020
  ident: 6631_CR54
  publication-title: J Neurol
  doi: 10.1007/s00415-020-09790-8
– volume: 99
  start-page: 11
  year: 2021
  ident: 6631_CR74
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.12.009
– volume: 372
  year: 2021
  ident: 6631_CR21
  publication-title: BMJ
– volume: 99
  start-page: 11
  year: 2021
  ident: 6631_CR63
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.12.009
– volume: 385
  start-page: 17
  year: 2018
  ident: 6631_CR77
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2017.11.039
– volume: 78
  start-page: 961
  year: 2021
  ident: 6631_CR88
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2021.1858
– volume: 74
  start-page: 101
  year: 2020
  ident: 6631_CR58
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-190818
– volume: 11
  start-page: 20
  year: 2019
  ident: 6631_CR29
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-019-0473-4
– volume: 8
  start-page: 13236
  issue: 1
  year: 2018
  ident: 6631_CR35
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31653-6
– volume: 49
  start-page: 563
  issue: 2
  year: 2022
  ident: 6631_CR51
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05483-0
– volume: 97
  start-page: 18
  year: 2019
  ident: 6631_CR9
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2018.12.001
– volume: 75
  start-page: 1114
  year: 2018
  ident: 6631_CR59
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2018.0894
– ident: 6631_CR1
– volume: 2020
  start-page: 2825037
  year: 2020
  ident: 6631_CR47
  publication-title: Behav Neurol
  doi: 10.1155/2020/2825037
– volume: 13
  start-page: 509
  year: 2019
  ident: 6631_CR38
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2019.00509
– volume: 58
  start-page: 1132
  year: 2017
  ident: 6631_CR25
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.116.184309
– volume: 9
  start-page: 10
  year: 2017
  ident: 6631_CR60
  publication-title: Alzheimers Dement (Amst)
  doi: 10.1016/j.dadm.2017.05.005
– volume: 61
  start-page: 1628
  year: 2020
  ident: 6631_CR68
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.239418
– volume: 45
  start-page: 1557
  year: 2018
  ident: 6631_CR81
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-4030-3
– volume: 20
  start-page: 393
  year: 2017
  ident: 6631_CR3
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4492
– volume: 60
  start-page: 959
  issue: 3
  year: 2017
  ident: 6631_CR56
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-170608
– volume: 90
  start-page: 20160156
  issue: 1070
  year: 2017
  ident: 6631_CR80
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20160156
– volume: 155
  start-page: 529
  year: 2011
  ident: 6631_CR24
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 266
  start-page: 2535
  issue: 10
  year: 2019
  ident: 6631_CR42
  publication-title: J Neurol
  doi: 10.1007/s00415-019-09441-7
– volume: 410
  start-page: 116645
  year: 2020
  ident: 6631_CR53
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2019.116645
– volume: 44
  start-page: 2060
  year: 2017
  ident: 6631_CR85
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-017-3750-0
– volume: 6
  start-page: 331
  year: 2009
  ident: 6631_CR20
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720509788929264
– volume: 20
  start-page: 823
  year: 2018
  ident: 6631_CR76
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.09.012
– volume: 46
  start-page: 26
  year: 2018
  ident: 6631_CR41
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2018.02.002
– volume: 45
  start-page: 1470
  year: 2018
  ident: 6631_CR23
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-4024-1
– volume: 218
  start-page: 276
  issue: 5
  year: 2021
  ident: 6631_CR75
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2020.234
– volume: 2
  start-page: 256
  year: 2008
  ident: 6631_CR19
  publication-title: Dement Neuropsychol
  doi: 10.1590/S1980-57642009DN20400004
– volume: 12
  start-page: 238
  year: 2020
  ident: 6631_CR32
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2020.00238
– volume: 11
  start-page: 33
  year: 2017
  ident: 6631_CR34
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2017.00033
– volume: 46
  start-page: 2370
  issue: 11
  year: 2019
  ident: 6631_CR40
  publication-title: Eur J Nucl Med Mol Imaging.
  doi: 10.1007/s00259-019-04400-w
– volume: 14
  start-page: 535
  year: 2018
  ident: 6631_CR8
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2018.02.018
– volume: 48
  start-page: 2097
  year: 2021
  ident: 6631_CR15
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05118-w
– volume: 52
  start-page: 183
  year: 2017
  ident: 6631_CR12
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.03.033
– volume: 17
  start-page: 79
  year: 2003
  ident: 6631_CR2
  publication-title: Ann Nucl Med
  doi: 10.1007/BF02988444
– volume: 6
  start-page: 1113
  issue: 6
  year: 2019
  ident: 6631_CR36
  publication-title: Ann Clin Transl Neurol.
  doi: 10.1002/acn3.782
– volume: 34
  start-page: 415
  year: 2020
  ident: 6631_CR71
  publication-title: Ann Nucl Med
  doi: 10.1007/s12149-020-01464-9
– volume: 20
  start-page: 148
  issue: 1
  year: 2020
  ident: 6631_CR37
  publication-title: BMC Neurol
  doi: 10.1186/s12883-020-01728-x
– volume: 11
  start-page: 313
  issue: 4
  year: 2021
  ident: 6631_CR57
  publication-title: Am J Nucl Med Mol Imaging
– volume: 52
  start-page: 228
  year: 2017
  ident: 6631_CR14
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.04.026
– volume: 52
  start-page: 214
  year: 2017
  ident: 6631_CR13
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.07.012
– volume: 50
  start-page: 1090
  year: 2023
  ident: 6631_CR87
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-022-06069-0
– volume: 24
  start-page: S732
  year: 2009
  ident: 6631_CR11
  publication-title: Mov Disord
  doi: 10.1002/mds.22499
– volume: 17
  start-page: 819
  issue: 5
  year: 2017
  ident: 6631_CR73
  publication-title: Geriatr Gerontol Int
  doi: 10.1111/ggi.12794
– volume: 261
  start-page: 75
  year: 2017
  ident: 6631_CR79
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2016.12.011
– volume: 61
  start-page: 597
  issue: 4
  year: 2020
  ident: 6631_CR64
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.230797
– volume: 41
  start-page: 5
  issue: 1
  year: 2020
  ident: 6631_CR39
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.24783
– volume: 94
  start-page: 743
  year: 2020
  ident: 6631_CR18
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000009323
– volume: 47
  start-page: 3152
  year: 2020
  ident: 6631_CR31
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04853-4
– volume: 42
  start-page: e96
  year: 2017
  ident: 6631_CR69
  publication-title: Clin Nucl Med
  doi: 10.1097/RLU.0000000000001477
– volume: 45
  start-page: 1497
  year: 2018
  ident: 6631_CR83
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-018-4039-7
– volume: 41
  start-page: 1398
  year: 2014
  ident: 6631_CR84
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-014-2753-3
– volume: 81
  start-page: 5
  year: 2010
  ident: 6631_CR10
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2008.157370
– volume: 28
  start-page: 1123
  issue: 4
  year: 2021
  ident: 6631_CR49
  publication-title: Eur J Neurol
  doi: 10.1111/ene.14639
– volume: 88
  start-page: 1009
  year: 2020
  ident: 6631_CR61
  publication-title: Ann Neurol
  doi: 10.1002/ana.25893
– volume: 15
  start-page: 927
  year: 2019
  ident: 6631_CR33
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.03.016
– volume: 44
  start-page: 2042
  year: 2017
  ident: 6631_CR26
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-017-3761-x
– volume: 67
  start-page: 1310
  year: 2019
  ident: 6631_CR30
  publication-title: Neurol India
  doi: 10.4103/0028-3886.271245
– volume: 13
  start-page: 764872
  year: 2021
  ident: 6631_CR48
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2021.764872
SSID ssj0018289
Score 2.4825847
SecondaryResourceType review_article
Snippet Purpose Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive...
Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive...
PurposeEpidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1876
SubjectTerms Accuracy
Alzheimer's disease
Amyloid
Atrophy
Biomarkers
Cardiology
Cognition
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Degeneration
Dementia
Dementia - diagnostic imaging
Dementia disorders
Disease Progression
Disorders
Epidemiology
Fluorine isotopes
Humans
Imaging
Imaging techniques
Impairment
Lewy bodies
Lewy body disease
Longitudinal studies
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Meta-analysis
Molecular Imaging - methods
Nuclear Medicine
Oncology
Orthopedics
Positron emission tomography
Quality assessment
Quality control
Radiology
Review Article
Reviews
Scintigraphy
Single photon emission computed tomography
Systematic review
Tau protein
Title Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review
URI https://link.springer.com/article/10.1007/s00259-024-06631-y
https://www.ncbi.nlm.nih.gov/pubmed/38355740
https://www.proquest.com/docview/3062287993
https://www.proquest.com/docview/2927212323
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXRHl1oa0GiRtYxM7DCRdEoUuF1AohKu0tcmxHitRNwj4O_Sv8WmYcJytUtZdc7DiPGXvmmydj76xWaaailOdaIUAxMuNFpTTXta3ySFkERWTQv7jMzq-SH4t0EQxu6xBWOZ6J_qC2nSEb-UdUbSVq9yhOP_d_OHWNIu9qaKHxkO1T6TICX2oxAS5BaIIAF4IErpC3Q9KMT50jYV9wlFCUgx8LfvO_YLqlbd7ylHoBNH_KngTNEb4MpD5gD1z7jD26CL7x5-zvtyFqDoeh36UDQFfDcuyBC83SdyWCoXH0GpoW-hUtQdHPgMog-ICtoVgHUO4JLJtrC1OUEVBaZbMimyJsOrDeutjoT6Bb2PZkPrCwqw4NQ2bMC3Y1P_v99ZyHzgvcxCrd8FpYJ42Tda2lMqhC2cQliYkio7SQok6cqLIktaqqcl2b1Joo1qioIbyJKhSK8Uu213atO2RgjHEiy3NtbJxUttAoDRGSuyLPakTfcsbE-NtLE8qSU3eM63IqqOxJVSKpSk-q8mbG3k_39ENRjntnH43ULMMGXZc7dpqxt9Mwbi3yl-jWddt1KQupSLJLnPNq4ILpccjDaYpfO2MfRrbYLX73u7y-_13esMdyYEkeiSO2t1lt3TEqPZvqxHM2XvP59xO2f3p2-fPXPyqTAoY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAoMEJ7CaOA8nSAghyrKl3Z5aqbfg2I4UqZsN-xDav8KP4Dcyk9cKVfTWsx3HyYw937wB3litolh5kUi0IgXFyFikudJCFzZPPGVJKWKD_vQknpyF38-j8x340-fCcFhlfyc2F7WdG7aR7xO0lYTuSZx-qn8K7hrF3tW-hUbLFkdu84tUtuXHwwOi71spx19Pv0xE11VAmEBFK1H41knjZFFoqQzBAxu6MDSeZ5T2pV-Ezs_jMLIqzxNdmMgaL9AEQgi6ezld-AGtewNuhkGQcghhMv42eC1Ye2EFj5QSoegsdUk6Taoeg4tUkETknP_AF5t_BeEldHvJM9sIvPE9uNshVfzcstZ92HHVA7g17XzxD-H3QRulR8NYb9MPcF7grO-5i-Ws6YKEbaPqJZYV1gtegqOtkcAnNgFibXEQ5FwXnJUXFoeoJuQ0znLBNkxczdE21sxSf0Bd4bpmc4XFbTVqbDNxHsHZtdDkMexW88o9BTTGOD9OEm1sEOY21SR9wzh1aRIXpO3LEfj9b89MVwadu3FcZEMB54ZUGZEqa0iVbUbwbnimbouAXDl7r6dm1l0Iy2zLviN4PQzTUWb_jK7cfL3MZCoVIwlJc560XDC8js5MFNHXjuB9zxbbxf-_l2dX7-UV3J6cTo-z48OTo-dwR7bsKTx_D3ZXi7V7QYBrlb9suBzhx3Ufq7-MWj2G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qheKLeO-xVUfQJ12abC6bCCLi8dhaW3yw0Le42d1AoCcnPRfk_BV_ir_OmdwOUuxbn7PZXGZm55s7wCurVRQrLxKJVmSgGBmLNFda6MLmiacsGUXs0D85jQ_Pwq_n0fkW_OlrYTitsj8Tm4Pazgz7yA8I2kpC96ROD4ouLeL7ePKhvhQ8QYojrf04jZZFjt36F5lvi_dHY6L1ayknn398OhTdhAFhAhUtReFbJ42TRaGlMgQVbOjC0HieUdqXfhE6P4_DyKo8T3RhImu8QBMgIRjv5XT4B7TvLbitgsTj6QnJ5MsQwWBLho09MlCEIrnqCnaasj0GGqkg7cj1_4Ev1v8qxStI90qUtlF-k3twt0Ot-LFls_uw5aoHsHPSxeUfwu9xm7FHl7HelCLgrMBpP38Xy2kzEQnbodULLCus57wFZ14jAVFsksXaRiHIdS84LS8sDhlOyCWd5Zz9mbicoW08m6V-h7rCVc2uC4ubztTYVuU8grMboclj2K5mldsFNMY4P04SbWwQ5jbVpInDOHVpEhdk-csR-P1vz0zXEp0nc1xkQzPnhlQZkSprSJWtR_BmuKduG4Jcu3q_p2bWHQ6LbMPKI3g5XCax5liNrtxstchkKhWjCklrnrRcMDyO5CeK6GtH8LZni83m_3-Xp9e_ywvYIYHKvh2dHu_BHdlyp_D8fdhezlfuGWGvZf68YXKEnzctVX8BIqtBsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+performance+of+molecular+imaging+methods+in+predicting+the+progression+from+mild+cognitive+impairment+to+dementia%3A+an+updated+systematic+review&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Cotta+Ramusino%2C+Matteo&rft.au=Massa%2C+Federico&rft.au=Festari%2C+Cristina&rft.au=Gandolfo%2C+Federica&rft.date=2024-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=51&rft.issue=7&rft.spage=1876&rft.epage=1890&rft_id=info:doi/10.1007%2Fs00259-024-06631-y&rft.externalDocID=10_1007_s00259_024_06631_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon