Pediococcus acidilactici isolated from traditional cheese as a potential probiotic with cytotoxic activity against doxorubicin-resistant MCF-7 cells

The considerable flexibility of cancerous cells to escape from chemical and biological drugs makes it clear that much is to be done to control and eliminate such cells. Probiotic bacteria, in this regard, have shown promising performance. In this study, we isolated and characterized lactic acid bact...

Full description

Saved in:
Bibliographic Details
Published in3 Biotech Vol. 13; no. 6; p. 170
Main Authors Khaleghi, Moj, Khorrami, Sadegh, Jafari-Nasab, Tayebeh
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The considerable flexibility of cancerous cells to escape from chemical and biological drugs makes it clear that much is to be done to control and eliminate such cells. Probiotic bacteria, in this regard, have shown promising performance. In this study, we isolated and characterized lactic acid bacteria from traditional cheese. Then we evaluated their activity against doxorubicin-resistant MCF-7 cells (MCF-7/DOX) through MTT assay, Annexin V/PI protocol, real-time PCR, and western blotting. Among the isolates, one strain with more than 97% similarity with Pediococcus acidilactici showed considerable probiotics properties. Low pH, high bile salts, and NaCl could not significantly affect this strain while it was susceptible to antibiotics. Also, it had a potent antibacterial activity. Besides, the cell-free supernatant of this strain (CFS) significantly reduced the viability of MCF-7 and MCF-7/DOX cancerous cells (to about 10% and 25%, respectively), while it was safe for normal cells. Also, we found that CFS could regulate the Bax/Bcl-2 at mRNA and protein levels to induce apoptosis in drug-resistant cells. We determined 75% early apoptosis, 10% late apoptosis, and 15% necrosis in the cells treated with the CFS. These findings can accelerate the development of probiotics as promising alternative treatments to overcome drug-resistant cancers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2190-572X
2190-5738
DOI:10.1007/s13205-023-03597-w