Tissue factor–bearing microparticles are a link between acute promyelocytic leukemia cells and coagulation activation: a human subject study

Acute promyelocytic leukemia (APL) cells constitutively express a large amount of tissue factor (TF) antigen, most of which is present in the cytoplasm. Coagulopathy may persist after induction therapy. We evaluated the overall role of circulating microparticles (MPs) in coagulation activation in AP...

Full description

Saved in:
Bibliographic Details
Published inAnnals of hematology Vol. 100; no. 6; pp. 1473 - 1483
Main Authors Zhao, Hongli, Sun, Jiayue, Yan, Liru, Jin, Bo, Hou, Wenyi, Cao, Fenglin, Li, Haitao, Zhou, Jin, Zhang, Yingmei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0939-5555
1432-0584
1432-0584
DOI10.1007/s00277-021-04533-9

Cover

Loading…
More Information
Summary:Acute promyelocytic leukemia (APL) cells constitutively express a large amount of tissue factor (TF) antigen, most of which is present in the cytoplasm. Coagulopathy may persist after induction therapy. We evaluated the overall role of circulating microparticles (MPs) in coagulation activation in APL-associated coagulopathy before and during induction therapy. Eleven adult patients with ≥ World Health Organization’s (WHO) grade 2 bleeding events and 11 sex- and age-matched healthy controls were selected. All patients received arsenic trioxide alone as induction therapy. MP-associated TF (MP-TF) activity and MP procoagulant activity (MP-PCA) and 12 coagulation- and anticoagulation-associated indexes were measured before, during, and after induction therapy. Correlation between MP-associated indexes and the other 12 indexes was analyzed in patients. The MP-TF activity was negligible in controls, whereas it markedly increased in patients, dropped rapidly after treatment, and returned to normal at the end of induction therapy. The MP-PCA was similar between patients and controls. The correlation analysis revealed that TF-bearing MPs in patients mainly originated from APL cells. Partially differentiated APL cells could also release TF-bearing MPs, and the higher the degree of APL cell differentiation, the lower the ability of APL cells to release TF-bearing MPs. MP-TF was the main source of active TF in plasma and an important contributor for the coagulation activation in APL-associated coagulopathy. It was MPs released by APL cells/partially differentiated APL cells that served as the vehicle to transfer the large amount of TF to plasma to activate coagulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0939-5555
1432-0584
1432-0584
DOI:10.1007/s00277-021-04533-9