Numerical simulation of bituminous coal combustion in a fullscale tiny-oil ignition burner: Influence of excess air ratio

The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to pr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Energy Vol. 6; no. 3; pp. 296 - 303
Main Authors Li, Zhengqi, Liu, Chunlong, Zhang, Xiang, Zeng, Lingyan, Chen, Zhichao
Format Journal Article
LanguageEnglish
Published Heidelberg SP Higher Education Press 01.09.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to primary air velocities of 17, 23, 30 and 35 m/s, respectively), which were chosen because they had been used previously in practical experiments. The numerical simulations agreed well with the experimental results, which demonstrate the suitability of the model used in the calculations. The gas temperatures were high along the center line of the burner for the four excess air ratios. The flame spread to the bumer wall and the high- temperature region was enlarged in the radial direction along the primary air flow direction. The O2 concentrations for the four excess air ratios were 0.5%, 1.1%, 0.9% and 3.0% at the exit of the second combustion chamber. The CO peak concentration was very high with values of 7.9%, 9.9%, 11.3% and 10.6% for the four excess air ratios at the exit of the second combustion chamber.
Bibliography:The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to primary air velocities of 17, 23, 30 and 35 m/s, respectively), which were chosen because they had been used previously in practical experiments. The numerical simulations agreed well with the experimental results, which demonstrate the suitability of the model used in the calculations. The gas temperatures were high along the center line of the burner for the four excess air ratios. The flame spread to the bumer wall and the high- temperature region was enlarged in the radial direction along the primary air flow direction. The O2 concentrations for the four excess air ratios were 0.5%, 1.1%, 0.9% and 3.0% at the exit of the second combustion chamber. The CO peak concentration was very high with values of 7.9%, 9.9%, 11.3% and 10.6% for the four excess air ratios at the exit of the second combustion chamber.
numerical simulation, tiny-oil ignition burner,pulverized coal, temperature field
11-6017/TK
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2095-1701
2095-1698
DOI:10.1007/s11708-012-0191-0