Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles

Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluorescence Vol. 20; no. 1; pp. 67 - 72
Main Authors Herz, Erik, Marchincin, Thomas, Connelly, Laura, Bonner, Daniel, Burns, Andrew, Switalski, Steven, Wiesner, Ulrich
Format Journal Article
LanguageEnglish
Published Boston Springer US 2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fluorescent silica nanoparticles encapsulating organic fluorophores provide an attractive materials platform for a wide array of applications where high fluorescent brightness is required. We describe a class of fluorescent silica nanoparticles with a core-shell architecture and narrow particle size distribution, having a diameter of less than 20 nm and covalently incorporating a blue-emitting coumarin dye. A quantitative comparison of the scattering-corrected relative quantum yield of the particles to free dye in water yields an enhancement of approximately an order of magnitude. This enhancement of quantum efficiency is consistent with previous work on rhodamine dye-based particles. It provides support for the argument that improved brightness over free dye in aqueous solution is a more general effect of covalent incorporation of fluorescent organic dyes within rigid silica nanoparticle matrices. These results indicate a synthetic route towards highly fluorescent silica nanoparticles that produces excellent probes for imaging, security, and sensing applications.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-009-0523-6