A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions

Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wear...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 51; no. 8; pp. 1665 - 1682
Main Authors Kuber, Pranav Madhav, Alemi, Mohammad Mehdi, Rashedi, Ehsan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wearable Chair (WC) and Squat-assist (SA) exoskeletons. Evaluations mainly included assessment of muscular demands in the thigh, shank, and upper/lower back regions. Both types of devices were found to lessen muscular demands in the lower body by 30–90%. WCs also reduced low-back demands (~ 37%) and plantar pressure (54–80%) but caused discomfort/unsafe feeling in participants. To generalize outcomes, we suggest standardizing approaches used for evaluating the devices. Along with addressing low adoption through design upgrades (e.g., ground and body supports/attachments), we recommend that researchers thoroughly evaluate temporal effects on muscle fatigue, metabolic rate, and stability of wearers. Although lower-limb exoskeletons were found to be beneficial, discrepancies in experimental protocols (posture/task/measures) were discovered. We also suggest simulating more realistic conditions, such as walking/sitting interchangeability for WCs and lifting loads for SA devices. The presented outcomes could help improve the design/evaluation approaches, and implementation of lower limb wearable devices across industries.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
ObjectType-Review-4
content type line 23
ISSN:0090-6964
1573-9686
1573-9686
DOI:10.1007/s10439-023-03242-w