Three-patch Models for the Evolution of Dispersal in Advective Environments: Varying Drift and Network Topology

We study the evolution of dispersal in advective three-patch models with distinct network topologies. Organisms can move between connected patches freely and they are also subject to the passive, directed drift. The carrying capacity is assumed to be the same in all patches, while the drift rates co...

Full description

Saved in:
Bibliographic Details
Published inBulletin of mathematical biology Vol. 83; no. 10; p. 109
Main Authors Jiang, Hongyan, Lam, King-Yeung, Lou, Yuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the evolution of dispersal in advective three-patch models with distinct network topologies. Organisms can move between connected patches freely and they are also subject to the passive, directed drift. The carrying capacity is assumed to be the same in all patches, while the drift rates could vary. We first show that if all drift rates are the same, the faster dispersal rate is selected for all three models. For general drift rates, we show that the infinite diffusion rate is a local Convergence Stable Strategy (CvSS) for all three models. However, there are notable differences for three models: For Model I, the faster dispersal is always favored, irrespective of the drift rates, and thus the infinity dispersal rate is a global CvSS. In contrast, for Models II and III a singular strategy will exist for some ranges of drift rates and bi-stability phenomenon happens, i.e., both infinity and zero diffusion rates are local CvSSs. Furthermore, for both Models II and III, it is possible for two competing populations to coexist by varying drift and diffusion rates. Some predictions on the dynamics of n -patch models in advective environments are given along with some numerical evidence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0092-8240
1522-9602
1522-9602
DOI:10.1007/s11538-021-00939-8