Behavioral and physiological response of the passerine bird Agelaioides badius to seeds coated with imidacloprid
Neonicotinoids are globally used insecticides, and there are increasing evidence on their negative effects on birds. This study is aimed at characterizing the behavioral and physiological effects of the neonicotinoid imidacloprid (IMI) in a songbird. Adults of Agelaioides badius were exposed for 7 d...
Saved in:
Published in | Environmental science and pollution research international Vol. 30; no. 33; pp. 80293 - 80310 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neonicotinoids are globally used insecticides, and there are increasing evidence on their negative effects on birds. This study is aimed at characterizing the behavioral and physiological effects of the neonicotinoid imidacloprid (IMI) in a songbird. Adults of
Agelaioides badius
were exposed for 7 days to non-treated peeled millet and to peeled millet treated with nominal concentrations of 75 (IMI1) and 450 (IMI2) mg IMI/kg seed. On days 2 and 6 of the trial, the behavior of each bird was evaluated for 9 min by measuring the time spent on the floor, the perch, or the feeder. Daily millet consumption, initial and final body weight, and physiological, hematological, genotoxic, and biochemical parameters at the end of exposure were also measured. Activity was greatest on the floor, followed by the perch and the feeder. On the second day, birds exposed to IMI1and IMI2 remained mostly on the perch and the feeder, respectively. On the sixth day, a transition occurred to sectors of greater activity, consistent with the disappearance of the intoxication signs: birds from IMI1 and IMI2 increased their time on the floor and the perch, respectively. Control birds always remained most of the time on the floor. IMI2 birds significantly decreased their feed intake by 31% the first 3 days, compared to the other groups, and significantly decreased their body weight at the end of the exposure. From the set of hematological, genotoxic, and biochemical parameters, treated birds exhibited an alteration of glutathione-S-transferase activity (GST) in breast muscle; the minimal effects observed are probably related to the IMI administration regime. These results highlight that the consumption of less than 10% of the bird daily diet as IMI-treated seeds trigger effects at multiple levels that can impair bird survival. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-28074-y |