Kinetics simulation of transmembrane transport of ions and molecules through a semipermeable membrane
We have developed a model to study the kinetics of the redistribution of ions and molecules through a semipermeable membrane in complex mixtures of substances penetrating and nonpenetrating through a membrane. It takes into account the degree of dissociation of these substances, their initial concen...
Saved in:
Published in | Journal of bioenergetics and biomembranes Vol. 52; no. 1; pp. 47 - 60 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have developed a model to study the kinetics of the redistribution of ions and molecules through a semipermeable membrane in complex mixtures of substances penetrating and nonpenetrating through a membrane. It takes into account the degree of dissociation of these substances, their initial concentrations in solutions separated by a membrane, and volumes of these solutions. The model is based on the assumption that only uncharged particles (molecules or ion pairs) diffuse through a membrane (and not ions as in the Donnan model). The developed model makes it possible to calculate the temporal dependencies of concentrations for all processing ions and molecules at system transition from the initial state to equilibrium. Under equilibrium conditions, the ratio of ion concentrations in solutions separated by a membrane obeys the Donnan distribution. The Donnan effect is the result of three factors: equality of equilibrium concentrations of penetrating molecules on each side of a membrane, dissociation of molecules into ions, and Le Chatelier’s principle. It is shown that the Donnan distribution (irregularity of ion distribution) and accordingly absolute value of the Donnan membrane potential increases if: (i) the nonpenetrating salt concentration (in one of the solutions) and its dissociation constant increases, (ii) the total penetrating salt concentration and its dissociation constant decreases, and (iii) the volumes ratio increases (between solutions with and without a nonpenetrating substance). It is shown also that only a slight difference between the degrees of dissociation of two substances can be used for their membrane separation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0145-479X 1573-6881 |
DOI: | 10.1007/s10863-019-09821-8 |