Neural field theory of neural avalanche exponents

The power-law exponents of observed size and lifetime distributions of near-critical neural avalanches are calculated from neural field theory using diagrammatic methods. This brings neural avalanches within the ambit of neural field theory, which has also previously explained near-critical 1/f spec...

Full description

Saved in:
Bibliographic Details
Published inBiological cybernetics Vol. 115; no. 3; pp. 237 - 243
Main Author Robinson, P. A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The power-law exponents of observed size and lifetime distributions of near-critical neural avalanches are calculated from neural field theory using diagrammatic methods. This brings neural avalanches within the ambit of neural field theory, which has also previously explained near-critical 1/f spectra and many other observed features of neural activity. This strengthens the case for near-criticality of the brain and opens the way for these other phenomena to be interrelated with avalanches and their dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0340-1200
1432-0770
DOI:10.1007/s00422-021-00875-9