Computational investigation, comparative approaches, molecular structural, vibrational spectral, non-covalent interaction (NCI), and electron excitations analysis of benzodiazepine derivatives

The present work explores the structural parameters and vibrational frequencies as well as molecular interactions of benzodiazepine derivatives, such as clothiapine (CT), clozapine (CZ), and loxapine (LX). Employing fitting experimental data to theoretical results is used to assess the structural pa...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular modeling Vol. 27; no. 9; p. 266
Main Authors Sarala, S., Geetha, S. K., Muthu, S., Irfan, Ahmad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present work explores the structural parameters and vibrational frequencies as well as molecular interactions of benzodiazepine derivatives, such as clothiapine (CT), clozapine (CZ), and loxapine (LX). Employing fitting experimental data to theoretical results is used to assess the structural parameters of heading composites. The main assignment is passed out according to the overall distribution of energy of the vibrational modes. From the hyper-conjugative interaction, the permanency of the structure had been predicted through natural bond orbital analysis; it is also used to identify the bonding and antibonding regions of the molecules. Moreover, electrostatic potential (ESP), density of states (DOS), and charge transfer occurring of the molecule among HOMO as well as LUMO energy were calculated and presented; utilizing electron localized field (ELF), localized orbital locator (LOL), and reduced density gradient (RDG), the chemical interactive regions are found. Additionally, mean polarizability ( α tot ), the first-order hyperpolarizability ( β tot ), and softness and hardness of the entitled compounds were also performed. The interaction between protein–ligand was also predicted by docking studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-021-04877-z