On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy
We propose here a deformation-induced diffusive phase transformation mechanism occurring during shearing of γ′ ordered phase in a γ/γ′ single crystalline CoNi-based superalloy. Shearing involved the creation and motion of a high density of planar imperfections. Through correlative electron microscop...
Saved in:
Published in | Acta materialia Vol. 155; pp. 362 - 371 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose here a deformation-induced diffusive phase transformation mechanism occurring during shearing of γ′ ordered phase in a γ/γ′ single crystalline CoNi-based superalloy. Shearing involved the creation and motion of a high density of planar imperfections. Through correlative electron microscopy and atom probe tomography, we captured a superlattice intrinsic stacking fault (SISF) and its associated moving leading partial dislocation (LPD). The structure and composition of these imperfections reveal characteristic chemical – structural contrast. The SISF locally exhibits a D019 ordered structure coherently embedded in the L12 γ′ and enriched in W and Co. Interestingly, the LPD is enriched with Cr and Co, while the adjoining planes ahead of the LPD are enriched with Al. Quantitative analysis of the three-dimensional compositional field in the vicinity of imperfections sheds light onto a new in-plane diffusion mechanism as the LPD moves on specific {111} planes upon application of stress at high temperature.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2018.05.074 |