The Protective Effects of Mogroside V Against Neuronal Damages by Attenuating Mitochondrial Dysfunction via Upregulating Sirtuin3
Mitochondrial dysfunction and oxidative stress are thought to play a dominant role in the pathogenesis of Parkinson’s disease (PD). Mogroside V (MV), extracted from Siraitia grosvenorii , exhibits antioxidant-like activities. The aim of this study was to investigate the function of MV in neuroprotec...
Saved in:
Published in | Molecular neurobiology Vol. 59; no. 4; pp. 2068 - 2084 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mitochondrial dysfunction and oxidative stress are thought to play a dominant role in the pathogenesis of Parkinson’s disease (PD). Mogroside V (MV), extracted from
Siraitia grosvenorii
, exhibits antioxidant-like activities. The aim of this study was to investigate the function of MV in neuroprotection in PD and to reveal its mechanism of action. To that end, we firstly set up mice models of PD with unilateral striatum injection of 0.25 mg/kg rotenone (Rot) and co-treated with 2.5 mg/kg, 5 mg/kg, and 10 mg/kg MV by gavage. Results showed that Rot-induced motor impairments and dopaminergic neuronal damage were reversed by treatment of 10 mg/kg MV. Then, we established cellular models of PD using Rot-treated SH-SY5Y cells, which were divided into six groups, including control, Rot, and co-enzyme Q10 (CQ10), as well as MV groups, MV25, MV50, and MV100 treated with 25 μM, 50 μM, and 100 μM MV doses, respectively. Results demonstrated that MV effectively attenuates Rot neurotoxicity through a ROS-related intrinsic mitochondrial pathway. MV reduced overproduction of reactive oxygen species (ROS), recovered the mitochondrial membrane potential (MMP), and increased the oxygen consumption rate and adenosine triphosphate (ATP) production in a dose-dependent manner. Hence, treatment with MV led to a reduction in the number of apoptotic cells, as reflected by Annexin-V/propidium iodide co-staining using flow cytometry and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay. In addition, the Sirtuin3 (SIRT3) protein level and activity were decreased upon exposure to Rot both in substantia nigra (SN) of mice and SH-SY5Y cells. SIRT3 impairment hyperacetylated a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2). MV alleviates SIRT3 and SOD2 molecular changes. However, after successfully inhibiting SIRT3 by its specific inhibitor 3-1H-1, 2, 3-triazol-4-yl pyridine (3TYP), MV was not able to reduce ROS levels, reverse abnormal MMP, or decrease apoptotic cells. Motor impairments and dopaminergic neuronal injury in the SN were alleviated with the oral administration of MV in Rot-treated PD mice, indicating a relationship between protection against defective motility and preservation of dopaminergic neurons. Therefore, we conclude that MV can alleviate Rot-induced neurotoxicity in a PD model, and that SIRT3 may be an important regulator in the protection of MV. |
---|---|
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-021-02689-z |