Asymptotic analysis of perforated plates and membranes. Part 2: Static and dynamic problems for large holes
Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plat...
Saved in:
Published in | International journal of solids and structures Vol. 49; no. 2; pp. 311 - 317 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.01.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plates are considered. Using the asymptotic homogenization method the original boundary-value problems are reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. In the present paper the perforated plates with large holes are considered, and the singular perturbation method is used to solve the pertinent unit cell problems. Matching of limiting solutions for small and large holes using the two-point Padé approximants is also accomplished, and the analytical expressions for the effective stiffnesses of perforated plates with holes of arbitrary sizes are obtained. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0020-7683 1879-2146 |
DOI: | 10.1016/j.ijsolstr.2011.10.004 |