A comparative assessment of microbial biodiesel and its life cycle analysis

Biodiesel is a type of sustainable, biodegradable energy made from natural sources like vegetable oils, animal fat, and from microbes. Unlike traditional diesel, it has a lower carbon footprint and produces fewer harmful emissions when burned. Biodiesel has gained popularity as a more sustainable su...

Full description

Saved in:
Bibliographic Details
Published inFolia microbiologica Vol. 69; no. 3; pp. 521 - 547
Main Authors E., Swathe Sriee A., Sharma, Yamini, J., Ranjitha, Shankar, Vijayalakshmi
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biodiesel is a type of sustainable, biodegradable energy made from natural sources like vegetable oils, animal fat, and from microbes. Unlike traditional diesel, it has a lower carbon footprint and produces fewer harmful emissions when burned. Biodiesel has gained popularity as a more sustainable substitute for hydrocarbon-based diesel and may be utilized in diesel engines without any modification. In this review, biodiesel from microorganisms such as algae, yeast, and fungi and advantages over another feedstock were discussed. The life cycle evaluation of biodiesel is a thorough assessment of the ecological and economic effects of biodiesel production and use, from the extraction of raw ingredients to the waste disposal process. The life cycle analysis considers the entire process, including the production of feedstocks, the production of biodiesel, and the use of biodiesel in vehicles and other applications. Life cycle analysis of biodiesel produced from microorganisms takes into consideration the environmental impact and sustainability of each step in the production process, including the impact on land use, water use, greenhouse gas emissions, and the availability of resources. In this section, biodiesel produced from microorganisms and other raw materials, its comparisons, and also steps involved in the life cycle such as the cultivation of microorganisms, harvesting of biomass, and conversion to biodiesel were discussed. The processes like extraction and purification, hydrothermal liquefaction, and their environmental impacts were examined by using various LCA software from the previously mentioned process. Graphical Abstract
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ISSN:0015-5632
1874-9356
DOI:10.1007/s12223-024-01153-4