Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for PHWR700
In order to attain improved in-reactor performance few prototypes pressure tubes of Zr-2.5Nb alloy were manufactured by employing forging to break the cast structure and to obtain more homogeneous microstructure. Both double forging and single forging were employed. The forged material was further p...
Saved in:
Published in | Journal of nuclear materials Vol. 466; pp. 208 - 219 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to attain improved in-reactor performance few prototypes pressure tubes of Zr-2.5Nb alloy were manufactured by employing forging to break the cast structure and to obtain more homogeneous microstructure. Both double forging and single forging were employed. The forged material was further processed by employing hot extrusion, cold pilgering and autoclaving. A detailed characterization in terms of mechanical properties and microstructure of the prototype tubes were carried for qualifying it for intended use as pressure tubes in PHWR700 reactors. In this work, Delayed Hydride Cracking (DHC) behavior of the forged Zr-2.5Nb pressure tube material characterized in terms of DHC velocity and threshold stress intensity factor associated with DHC (KIH) was compared with that of conventionally manufactured material in the temperature range of 200–283 °C. Activation energy associated with the DHC in this alloy was found to be ∼60 kJ/mol for the forged materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2015.08.002 |