Dynamic reconfiguration of the functional brain network after musical training in young adults

Musical performance strongly depends on continuous and dynamic information integration from the motor, sensory and cognitive systems. Musical training is an excellent model to investigate the plasticity of the dynamics in functional brain networks. Here, we compared the dynamics of the resting-state...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 224; no. 5; pp. 1781 - 1795
Main Authors Li, Qiongling, Wang, Xuetong, Wang, Shaoyi, Xie, Yongqi, Li, Xinwei, Xie, Yachao, Li, Shuyu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Musical performance strongly depends on continuous and dynamic information integration from the motor, sensory and cognitive systems. Musical training is an excellent model to investigate the plasticity of the dynamics in functional brain networks. Here, we compared the dynamics of the resting-state functional brain network in 29 healthy, young adults (13 males) before and after 24 weeks of piano training (all participants had been novices) with the functional brain network of 27 matched participants (13 males) who were also evaluated longitudinally but without any training. The sliding window approach was used to construct the time-varying functional networks, and the dynamics of 13 well-known functional systems were evaluated. The mean nodal flexibility of each functional system, which is a measure that captures changes in the local properties of the network, was calculated. In addition, the intrasystem connections, intersystem connections and their ratio for each functional system were also calculated. We found increased flexibility of the visual and auditory systems in participants after musical training when compared with the controls. Moreover, the visual system showed increased intrasystem and intersystem connections, and the auditory system showed increased intersystem connections and a decreased ratio of the intrasystem and intersystem connections in the training group after musical training. Furthermore, regression analysis revealed a positive correlation between the increased intersystem connections of the visual system and practice time in the training group. Our results indicated that the dynamics of the functional brain network can be changed by musical training, which provided new insights into the brain plasticity and functional architecture of the brain network.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1863-2653
1863-2661
0340-2061
DOI:10.1007/s00429-019-01867-z