A survey of proteins in midgut contents of the tick, Haemaphysalis flava, by proteome and transcriptome analysis

Tick blood meals are stored and digested in their midguts. Blood digestion is complex, and many proteins are involved. Study of the tick-derived proteins in the midgut content may aid in the discovery of active molecules that would be useful for anti-tick vaccines. We analyzed the midgut content pro...

Full description

Saved in:
Bibliographic Details
Published inExperimental & applied acarology Vol. 80; no. 2; pp. 269 - 287
Main Authors Feng, Li-Li, Cheng, Tian-Yin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tick blood meals are stored and digested in their midguts. Blood digestion is complex, and many proteins are involved. Study of the tick-derived proteins in the midgut content may aid in the discovery of active molecules that would be useful for anti-tick vaccines. We analyzed the midgut content proteomes of partially engorged female Haemaphysalis flava , fully engorged female H. flava , and hedgehog serum using liquid chromatography tandem-mass spectrometry and label-free quantitation. In this study, high-confidence protein profiling of tick midgut content was determined. Based on the search against our in-house transcriptome database, the 28 high-confidence proteins were identified. Of these, 17 were identified as tick-derived, and the rest were of unspecified origin (proteins that could not be differentiated as host-derived or tick-derived proteins). The function of these midgut content proteins identified here may involve nutrient transportation, anti-coagulation, erythrocyte lysis, detoxification, lipid metabolism, and immunization. The presence of hemoglobin suggested that the red blood cells were lysed in the gut lumen. The midgut contents contain a large amount of fibrinogen and it has the ability to clot immediately. The midgut contained mostly host-derived proteins, and these host proteins provide rich nutrients for tick development and reproduction. However, some intracellular proteins were also identified, suggesting the possibility of shedding of the midgut epithelium and ingestion of saliva during feeding. This finding advances our understanding of the digestive mechanism and will be useful in the screening of vaccine antigens.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-8162
1572-9702
DOI:10.1007/s10493-019-00457-2