Influence of microclimate control on the growth of asparagus under greenhouse in tropical climates
High temperatures have become common in cities in Taiwan, and this phenomenon has spread to surrounding agricultural areas. Tainan, a city located in a tropical climate zone with agriculture as its primary development industry, is one of the cities considerably affected by the high temperature. High...
Saved in:
Published in | International journal of biometeorology Vol. 67; no. 7; pp. 1225 - 1235 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High temperatures have become common in cities in Taiwan, and this phenomenon has spread to surrounding agricultural areas. Tainan, a city located in a tropical climate zone with agriculture as its primary development industry, is one of the cities considerably affected by the high temperature. High temperatures can reduce crop yields and even cause plant death, especially for vulnerable high-value crops, which are severely to microclimate conditions. Asparagus is a high-value crop that has long been cultivated in the Jiangjun District of Tainan. Recently, asparagus has been planted in greenhouses to protect against pests and natural disasters. However, the greenhouses can overheat. To identify the optimal growth environment for asparagus, this study applies vertical monitoring to record the temperature in the greenhouse and the soil moisture content of a control (canal irrigation) and an experimental (drip irrigation) group. When the surface layer of the soil exceeds 33°C, the tender stems of asparagus bloom readily, reducing its commercial value. Therefore, drip irrigation was conducted with cool water (26°C) to reduce soil temperature in summer and warm water (28°C) to increase soil temperature in winter. The study also recorded the growth of asparagus using daily yields measured by farmers during weighing and packing to understand the benefits of controlling the greenhouse microclimate. This study reports a correlation of 0.85 between asparagus yield and temperature and a correlation of 0.86 between asparagus yield and soil moisture content. The use of a drip irrigation system with a water temperature adjustment function not only saves up to 50% of water but also resulted in an average yield increase of 10% through maintaining stable soil moisture content and temperature. Therefore, the findings of this study can be applied to asparagus yields affected by high temperature and can solve the problems of poor quality in summer and low yield in winter. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0020-7128 1432-1254 |
DOI: | 10.1007/s00484-023-02490-8 |