Migraine detection from EEG signals using tunable Q-factor wavelet transform and ensemble learning techniques
Migraine is one of the major neurovascular diseases that recur, can persist for a long time, cripple or weaken the brain. This study uses electroencephalogram (EEG) signals for the diagnosis of migraine, and a computer-aided diagnosis system is presented to support expert opinion. A tunable Q-factor...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 44; no. 4; pp. 1201 - 1212 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Migraine is one of the major neurovascular diseases that recur, can persist for a long time, cripple or weaken the brain. This study uses electroencephalogram (EEG) signals for the diagnosis of migraine, and a computer-aided diagnosis system is presented to support expert opinion. A tunable Q-factor wavelet transform (TQWT) based method is proposed for the analysis of the oscillatory structure of EEG signals. With TQWT, EEG signals are decomposed into sub bands. Then, the features are statistically calculated from these bands. The success of the obtained features in distinguishing between migraine patients and healthy control subjects was performed using the Kruskal Wallis test. Feature values obtained from each sub band were classified using well-known ensemble learning techniques and their classification performances were tested. Among the evaluated classifiers, the highest classification performance was achieved as 89.6% by using the Rotation Forest algorithm with the features obtained with Sub band 2. These results reveal the potential of the study as a tool that will support expert opinion in the diagnosis of migraine. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2662-4729 0158-9938 2662-4737 2662-4737 1879-5447 |
DOI: | 10.1007/s13246-021-01055-6 |