Mechanisms of straw biochar’s improvement of phosphorus bioavailability in soda saline-alkali soil

High pH and exchangeable sodium percentage, structural deterioration due to alkalinity, and nutrient deficiencies are typical characteristics of soda saline-alkali soil. In addition, phosphorus is typically the main limiting nutrient. Thus, there have been intense efforts to counter the salinity and...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 32; pp. 47867 - 47872
Main Authors Li, Yuefen, Li, Guanghui
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High pH and exchangeable sodium percentage, structural deterioration due to alkalinity, and nutrient deficiencies are typical characteristics of soda saline-alkali soil. In addition, phosphorus is typically the main limiting nutrient. Thus, there have been intense efforts to counter the salinity and improve the phosphorus availability of these soils (which cover large and growing areas). A promising approach is long-term application of straw biochar, which can significantly reduce soil salinity and promote the transformation of soil phosphorus. However, the mechanisms involved remain unclear. Thus, major aims of this review are to systematically address the mechanisms whereby biochar improves phosphorus bioavailability in soda saline-alkali soil through changes in the soil’s physico-chemical properties, aggregate stability, contents of organic acids, enzyme activities, key functional genes, and microbial community structure. Another is to provide theoretical foundations for establishing effective methods for applying straw biochar to improve soda saline-alkali land and optimize phosphorus fertilizer applications.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-022-20489-3