Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus

Objectives To develop an MRI-based multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis (RRMS) and its mimicker neuropsychiatric systemic lupus erythematosus (NPSLE). Methods A total of 112 patients with RRMS ( n = 63) or NPSLE ( n = 49) were assigned to training...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 32; no. 8; pp. 5700 - 5710
Main Authors Luo, Xiao, Piao, Sirong, Li, Haiqing, Li, Yuxin, Xia, Wei, Bao, Yifang, Liu, Xueling, Geng, Daoying, Wu, Hao, Yang, Liqin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives To develop an MRI-based multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis (RRMS) and its mimicker neuropsychiatric systemic lupus erythematosus (NPSLE). Methods A total of 112 patients with RRMS ( n = 63) or NPSLE ( n = 49) were assigned to training and test sets with a ratio of 3:1. All lesions across the whole brain were manually segmented on T2-weighted fluid-attenuated inversion recovery images. For each single lesion, 371 radiomics features were extracted and trained using machine learning algorithms, producing Radiomics Index for Lesion (RIL) for each lesion and a single-lesion radiomics model. Then, for each subject, single lesions were assigned to one of two disease courts based on their distance to decision threshold, and a Radiomics Index for Subject (RIS) was calculated as the mean RIL value of lesions on the higher-weighted court. Accordingly, a subject-level discrimination model was constructed and compared with performances of two radiologists. Results The subject-based discrimination model satisfactorily differentiated RRMS and NPSLE in both training (AUC = 0.967, accuracy = 0.892, sensitivity = 0.917, and specificity = 0.872) and test sets (AUC = 0.962, accuracy = 0.931, sensitivity = 1.000, and specificity = 0.875), significantly better than the single-lesion radiomics method (training: p < 0.001; test: p = 0.001) Besides, the discrimination model significantly outperformed the senior radiologist in the training set (training: p = 0.018; test: p = 0.077) and the junior radiologist in both the training and test sets (training: p = 0.008; test: p = 0.023). Conclusions The multi-lesion radiomics model could effectively discriminate between RRMS and NPSLE, providing a supplementary tool for accurate differential diagnosis of the two diseases. Key Points • Radiomic features of brain lesions in RRMS and NPSLE were different. • The multi-lesion radiomics model constructed using a merging strategy was comprehensively superior to the single-lesion-based model for discrimination of RRMS and NPSLE. • The RRMS-NPSLE discrimination model showed a significantly better performance or a trend toward significance than the radiologists.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1432-1084
0938-7994
1432-1084
DOI:10.1007/s00330-022-08653-2