Mouse Neural Stem Cell Differentiation and Human Adipose Mesenchymal Stem Cell Transdifferentiation Into Neuron- and Oligodendrocyte-like Cells With Myelination Potential
Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in...
Saved in:
Published in | Stem cell reviews and reports Vol. 18; no. 2; pp. 732 - 751 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in neural repair. Here, we describe novel neural differentiation methods. NSC from adult mouse brains and human adipose-derived stem cells (hADSC) were isolated and characterized regarding their neural differentiation potential based on neural marker expression profiles. For both cell types, their capabilities of differentiating into neuron-, astrocyte- and oligodendrocytes-like cells (NLC, ALC and OLC, respectively) were analyzed. Our methodologies were capable of producing NLC, ALC and OLC from adult murine and human transdifferentiated NSC. NSC showed augmented gene expression of
NES, TUJ1, GFAP
and
PDGFRA/Cnp
. Following differentiation induction into NLC, OLC or ALC, specific neural phenotypes were obtained expressing MAP2, GalC/O4 or GFAP with compatible morphologies, respectively. Accordingly, immunostaining for nestin
+
in NSC, GFAP
+
in astrocytes and GalC/O4
+
in oligodendrocytes was detected. Co-cultured NLC and OLC showed excitability in 81.3% of cells and 23.5% of neuron/oligodendrocyte marker expression overlap indicating occurrence of in vitro myelination. We show here that hADSC can be transdifferentiated into NSC and distinct neural phenotypes with the occurrence of neuron myelination in vitro, providing novel strategies for CNS regeneration therapy.
Graphical Abstract
Superior Part
: Schematic organization of obtaining and generating hNSC from hADSC and differentiation processes and phenotypic expression of neuron, astrocyte and oligodendrocyte markers (MAP2, GFAP and O4, respectively) and stem cell marker (NES) of differentiating hNSC 14 days after induction. The nuclear staining in blue corresponds to DAPI. bar = 100 μm.
Inferior part:
Neural phenotype fates in diverse differentiation media. NES: nestin; GFAP: Glial fibrillary acidic protein. MAP2: Microtubule-associated protein 2. TUJ1: β-III tubulin. PDGFRA: PDGF receptor alpha.
Two-way ANOVA
with Bonferroni post-test with
n
= 3. *
p
< 0.05 and **
p
< 0.01: (NSCiM1 NSC induction medium 1) vs differentiation media. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2629-3269 2629-3277 |
DOI: | 10.1007/s12015-021-10218-7 |