Pericytic Laminin Maintains Blood-Brain Barrier Integrity in an Age-Dependent Manner

Brain pericytes synthesize and deposit laminin at the blood-brain barrier (BBB). The function of pericyte-derived laminin in BBB maintenance remains largely unknown. In a previous study, we generated pericytic laminin conditional knockout (PKO) mice, which developed BBB breakdown and hydrocephalus i...

Full description

Saved in:
Bibliographic Details
Published inTranslational stroke research Vol. 11; no. 2; pp. 228 - 242
Main Authors Gautam, Jyoti, Cao, Yu, Yao, Yao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Brain pericytes synthesize and deposit laminin at the blood-brain barrier (BBB). The function of pericyte-derived laminin in BBB maintenance remains largely unknown. In a previous study, we generated pericytic laminin conditional knockout (PKO) mice, which developed BBB breakdown and hydrocephalus in a mixed genetic background. However, since hydrocephalus itself can compromise BBB integrity, it remains unclear whether BBB disruption in these mutants is due to loss of pericytic laminin or secondary to hydrocephalus. Here, we report that, in C57Bl6 dominant background, the PKO mice fail to show hydrocephalus, have a normal lifespan, and develop BBB breakdown in an age-dependent manner. Further mechanistic studies demonstrate that abnormal paracellular transport, enhanced transcytosis, decreased pericyte coverage, and diminished AQP4 level are responsible for BBB disruption in PKO mice. These results suggest that pericyte-derived laminin plays an indispensable and age-dependent role in the maintenance of BBB integrity under homeostatic conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1868-4483
1868-601X
DOI:10.1007/s12975-019-00709-8