An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition

Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN...

Full description

Saved in:
Bibliographic Details
Published inBrain topography Vol. 37; no. 1; pp. 1 - 18
Main Authors Reddy, Y. Rama Muni, Muralidhar, P., Srinivas, M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nowadays, road accidents pose a severe risk in cases of sleep disorders. We proposed a novel hybrid deep-learning model for detecting drowsiness to address this issue. The proposed model combines the strengths of discrete wavelet long short-term memory (DWLSTM) and convolutional neural networks (CNN) models to classify single-channel electroencephalogram (EEG) signals. Baseline models such as support vector machine (SVM), linear discriminant analysis (LDA), back propagation neural networks (BPNN), CNN, and CNN merged with LSTM (CNN+LSTM) did not fully utilize the time sequence information. Our proposed model incorporates a majority voting between LSTM layers integrated with discrete wavelet transform (DWT) and the CNN model fed with spectrograms as images. The features extracted from sub-bands generated by DWT can provide more informative & discriminating than using the raw EEG signal. Similarly, spectrogram images fed to CNN learn the specific patterns and features with different levels of drowsiness. Furthermore, the proposed model outperformed state-of-the-art deep learning techniques and conventional baseline methods, achieving an average accuracy of 74.62%, 77.76% (using rounding, F1-score maximization approach respectively for generating labels) on 11 subjects for leave-one-out subject method. It achieved high accuracy while maintaining relatively shorter training and testing times, making it more desirable for quicker drowsiness detection. The performance metrics (accuracy, precision, recall, F1-score) are evaluated after 100 randomized tests along with a 95% confidence interval for classification. Additionally, we validated the mean accuracies from five types of wavelet families, including daubechis, symlet, bi-orthogonal, coiflets, and haar, merged with LSTM layers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0896-0267
1573-6792
1573-6792
DOI:10.1007/s10548-023-01016-0