Influence of early rearing environment on water-borne cortisol and expression of stress-related genes in grass carp (Ctenopharyngodon idella)

Nowadays, lower post-release survivorship of hatchery-reared fish in natural aquatic bodies has attained great attention and research is in progress to determine the reasons for their higher mortality. It is assumed that hatchery rearing environments negatively affect the physiological stress respon...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology reports Vol. 47; no. 7; pp. 5051 - 5060
Main Authors Murtaza, Mahmood ul Hassan, Zuberi, Amina, Ahmad, Muhammad, Amir, Imrana, Kamran, Muhammad, Ahmad, Manzoor
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nowadays, lower post-release survivorship of hatchery-reared fish in natural aquatic bodies has attained great attention and research is in progress to determine the reasons for their higher mortality. It is assumed that hatchery rearing environments negatively affect the physiological stress response of the fish. Thus, understanding how rearing environments modulate this is important for the well-being of fish. Here, an attempt has been made to assess the influence of two early rearing environments, i.e., barren (BR), mimic the conventional hatchery rearing environment; without any substrate and enrichment items and structurally enriched (ER), containing multi-colored gravel substrate, cobbles and plants, on the stress regulators i.e., HPI-axis and brain monoaminergic system of fish. Three-day old grass carp ( Ctenopharyngodon idella ) postlarvae were reared up to the fingerling stage in the aforementioned environments. For the stress assay, fish were subjected to net capture followed by 30 min confinement in a small container at a lower water level. The pre- and post-stress responses were compared by evaluating their water-borne cortisol and the mRNA level of corticotropin releasing hormone (CRH), dopamine D1A receptor (DRD1A) and hydroxytryptamine receptor 2B (HTR2B) in the whole brain through qPCR analysis. Results of two-way ANOVA revealed significantly low (p < .001) post-stress concentration and release rate of water-borne cortisol and pre- and post-stress expression of CRH, DRD1A and HTR2B genes in the ER than BR fish. It is concluded that a structurally complex early rearing environment reduces the stress level in fish.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-020-05574-5