Characterization of adrenal lesions on chemical shift MRI: comparison of 1.5 T and 3 T MRI
Purpose To compare three chemical shift MRI techniques [two-dimensional (2D) dual gradient echo (dGRE), 3D VIBE, and 3D VIBE-Dixon] at 3 T and 2D dGRE technique at 1.5 T to assess their ability of detecting microscopic fat in adrenal adenomas and differentiating between adenomas and non-adenomas. Me...
Saved in:
Published in | Abdominal imaging Vol. 44; no. 10; pp. 3359 - 3369 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
To compare three chemical shift MRI techniques [two-dimensional (2D) dual gradient echo (dGRE), 3D VIBE, and 3D VIBE-Dixon] at 3 T and 2D dGRE technique at 1.5 T to assess their ability of detecting microscopic fat in adrenal adenomas and differentiating between adenomas and non-adenomas.
Methods
Seventy-eight patients with 97 lesions (78 adenomas, 19 non-adenomas) underwent both 1.5 T and 3 T chemical shift MRI. The Wilcoxon signed-ranked test was used to determine if there was significant difference between the signal intensity index (SII) values of each technique to assess their ability to detect microscopic fat in adrenal adenomas. ROC analysis was performed for the SII values of each technique, the adrenal-to-spleen SI ratio of 2D dGRE technique at 3 T, and the fat fraction values of the 3D VIBE-Dixon technique to identify the optimal threshold for differentiation of adrenal adenomas from non-adenomas.
Results
For detection of microscopic fat, the mean SII value of 2D dGRE technique at 1.5 T was significantly higher than that of the chemical shift imaging techniques at 3 T (
p
= 0.001). For discrimination of adenomas from non-adenomas, the area under the curve (AUC) and 95% confidence interval values of 2D dGRE technique at 1.5 T and 2D dGRE, 3D VIBE, 3D VIBE-Dixon techniques at 3 T were calculated as 1.00 (1.00–1.00), 0.991 (0.978–1.00), 0.999 (0.995–1.00), 0.993 (0.979–1.00), respectively, for the SII.
Conclusion
Chemical shift MRI at 1.5 T using the 2D dGRE technique provided the most accurate differentiation between adenomas and non-adenomas. However, there was no statistically significant difference between chemical shift imaging techniques at 1.5 T and 3 T. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2366-004X 2366-0058 |
DOI: | 10.1007/s00261-019-02067-3 |