Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein

Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology reports Vol. 47; no. 4; pp. 2835 - 2843
Main Authors Hassine, Ikbel Hadj, Gharbi, Jawhar, Hamrita, Bechr, Almalki, Mohammed A., Rodríguez, José Francisco, Ben M’hadheb, Manel
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coxsackievirus B4 (CV-B4) is suspected to be an environmental factor that has the intrinsic capacity to damage the pancreatic beta cells and therefore causes insulitis and type 1 diabetes (T1D). Although vaccination against CV-B4 could reduce the incidence of this chronic auto-immune disease, there is currently no therapeutic reagent or vaccine in clinical use. By the employment of the Bac-to-Bac® vector system to express the major viral capsid protein, we contributed towards the development of a CV-B4 vaccine by producing CV-B4 virus-like particles (VLPs) from recombinant baculovirus in infected insect cells. In fact Western blot and Immunofluorescence analysis detected the viral protein 1 (VP1) in the cells resulting from the construction of a recombinant bacmid DNA carrying the key immunogenic protein then transfected in the insect cells. Sucrose gradient ultracentrifugation fractions of the infected cell lysates contained the recombinant protein and the electron microscopy demonstrated the presence of VLPs in these sucrose fractions. This study clearly shows for the first time the expression of CVB4 VP1 structure protein alone can form VLPs in the baculovirus-infected insect cell keeping conserved both characteristics and morphology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4851
1573-4978
DOI:10.1007/s11033-020-05333-6