Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease

Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington’s disease (HD) is incurable genetic disorder associated with mutant huntingtin (mH...

Full description

Saved in:
Bibliographic Details
Published inIn vitro cellular & developmental biology. Animal Vol. 57; no. 6; pp. 641 - 648
Main Authors Lee, Mijung, Ban, Jae-Jun, Won, Bo Hee, Im, Wooseok, Kim, Manho
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Society for In Vitro Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington’s disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1071-2690
1543-706X
DOI:10.1007/s11626-021-00595-1