Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii

Bacterial cellulose (BC) exhibits a unique combination of porosity, tensile strength, reticulated crystal structure and biocompatibility useful for many applications in the food, biomedical and other industries. Polysaccharide addition has been shown to improve the production and the mechanical prop...

Full description

Saved in:
Bibliographic Details
Published inBioprocess and biosystems engineering Vol. 45; no. 3; pp. 573 - 587
Main Authors Hu, Hetian, Catchmark, Jeffrey M., Demirci, Ali
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bacterial cellulose (BC) exhibits a unique combination of porosity, tensile strength, reticulated crystal structure and biocompatibility useful for many applications in the food, biomedical and other industries. Polysaccharide addition has been shown to improve the production and the mechanical properties of BC nanocomposites. This study examined the effect of pullulan on BC fermentation as well as the co-culturing of the BC producer with Aureobasidium pullulans , a fungal strain that produces pullulan as an exopolysaccharide. Results showed that a 1% pullulan addition improved Young’s modulus of BC pellicles for sixfold. Addition of pullulan at 1.5% and 2% levels could increase the BC production from 0.447 to 0.814 and 1.997 g/L, respectively. The co-culture fermentation demonstrated a mixed effect on the aggregation and bundling of BC while resulting in a significant improvement in mechanical properties. The study provided a polysaccharide additive and a novel fermentation method to produce BC with improved properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1615-7591
1615-7605
DOI:10.1007/s00449-021-02680-x