Terahertz narrow bandstop, broad bandpass filter using double-layer S-shaped metamaterials
Abstract In this study, double-layer S-shaped metamaterials (MMs) are analyzed by terahertz time-domain spectroscopy. These materials exhibit narrow bandstop and broad bandpass transmission properties at both horizontal and vertical electric-field polarizations. A 117% increase in the unloaded quali...
Saved in:
Published in | Science China. Information sciences Vol. 56; no. 12; pp. 128 - 134 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract In this study, double-layer S-shaped metamaterials (MMs) are analyzed by terahertz time-domain spectroscopy. These materials exhibit narrow bandstop and broad bandpass transmission properties at both horizontal and vertical electric-field polarizations. A 117% increase in the unloaded quality factor is experimen- tally observed for these materials. The center frequency is approximately 0.45 THz, with a 3-dB bandwidth of 0.52 THz from 0.20 to 0.72 THz at normal incidence. The measured average insertion loss is 0.5 dB with a ripple of 1 dB. These results show that double-layer S-shaped MMs are effective in designing tunable terahertz devices. |
---|---|
Bibliography: | 11-5847/TP Abstract In this study, double-layer S-shaped metamaterials (MMs) are analyzed by terahertz time-domain spectroscopy. These materials exhibit narrow bandstop and broad bandpass transmission properties at both horizontal and vertical electric-field polarizations. A 117% increase in the unloaded quality factor is experimen- tally observed for these materials. The center frequency is approximately 0.45 THz, with a 3-dB bandwidth of 0.52 THz from 0.20 to 0.72 THz at normal incidence. The measured average insertion loss is 0.5 dB with a ripple of 1 dB. These results show that double-layer S-shaped MMs are effective in designing tunable terahertz devices. metamaterial, terahertz, filter, double-layer S-shaped material, transmission ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-013-5034-z |