Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory

. The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of temp...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. E, Soft matter and biological physics Vol. 40; no. 2; pp. 17 - 12
Main Authors Amokrane, S., Tchangnwa Nya, F., Ndjaka, J. M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:. The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2017-11506-8